В каких органеллах клеток водорослей содержится хлорофилл

В каких органеллах клеток водорослей содержится хлорофилл thumbnail

Хлорофилл: чем полезен для организма человека

Хлорофилл – уникальное вещество, которое присутствует в зеленых растениях. Этот компонент очень полезен для человеческого организма. 

Содержание:

  • Хлорофилл: что это

  • В чем польза хлорофилла

  • В каких формах существует

  • Как принимать жидкий хлорофилл

  • Сколько нужно принимать хлорофилла

  • Как использовать хлорофилл для похудения

  • В каких продуктах содержится хлорофилл

  • Вред и противопоказания

  • Рецепт приготовления полезного напитка

  • Сколько стоит хлорофилл

Хлорофилл: что это

Хлорофилл – пигмент зеленых растений. Именно за счет этого элемента осуществляется фотосинтез. В его составе присутствует магний. Вещество отлично воспринимается организмом человека и несет ему неописуемую пользу.

В чем польза хлорофилла

В результате научных разработок удалось выпустить хлорофилл в жидком виде. Является БАДом и имеет массу положительных свойств. Другой способ добиться, чтобы в организм поступало как можно больше этого вещества – добавить в рацион питания как можно больше зеленых овощей.

Под воздействием жидкого хлорофилла возрастает количество кровеносных клеток. При ежедневном применении улучшается движение кислорода между тканями и клетками организма.

Вещество особенно полезно тем людям, которые склонны к появлению раковых клеток. Составные компоненты позволяют связывать канцерогены, которые способны вызывать раковые новообразования.

К другим не менее важным положительным свойствам можно отнести:

  • связывает тяжелые металлы и очищает от них организм;

  • убивает вредоносные микроорганизмы и препятствует их распространению;

  • оказывает дезинфицирующее действие;

  • благоприятно воздействует на работу желудка;

  • убивает резкий запах пота;

  • показан при туберкулезе и доброкачественных новообразованиях молочных желез.

В каких формах существует

Крем

В аптеке можно встреть крем «Д-пантенол с хлорофиллом». Средство отлично справляется с кожными проблемами, а именно раздражениями и высыпаниями. Крем снимание красноту, способствует быстрому затягиванию ран, убирает шелушение, увлажняет пересушенную кожу. Его можно наносить не только на лицо, но и на все тело. Нужно нанести немного крема на кожу и оставить до полного впитывания.

Каротиновая паста

Это действенное средство на основе хлорофилла. Эффективно борется с кожными высыпаниями, пигментацией и следами после акне. При использовании пасты происходит комплексное воздействие на кожный покров: снимается отек, убирается краснота и сальные пробки. Небольшое количество пасты нанести на поврежденную кожу на 10-15 минут, после чего хорошо промыть под теплой водой.

Порошок

Средство в виде порошка рекомендовано принимать людям, склонным к частым болезням, чей иммунитет ослаблен. Он очищает организм, укрепляет иммунную систему, повышает уровень гемоглобина в крови, улучшает зрение. Также стоит принимать при проблемах с щитовидной железой, в целях профилактики рака. Нужно развести 1 пакетик порошка с 0,5 л питьевой воды и пить на протяжении дня. Хранить нужно не более 24 часов при температуре 18-25 градусов.

Капсулы

После приема отмечаются следующие положительные результаты: укрепляется иммунитет, заживают тяжелые раны, улучшается работа поджелудочной, нормализуется кровеносное давление, организм очищается от токсичных веществ, улучшается работа ЖКТ, оказывается успокаивающее действие на ЦНС.

Перед использованием любой формы лучше проконсультироваться у специалиста, чтобы убедиться в отсутствии противопоказаний.

Как принимать жидкий хлорофилл

Средство в жидкой форме является биологически активной добавкой, поэтому не относится к числу лекарственных препаратов. Взрослому человеку нужно принимать по 1 ст. л. ложке на 200 мл воды. В сутки можно принимать по 2-3 раза. Таким раствором советуют полоскать полость рта.

При внутреннем приеме можно достичь существенного результата для улучшения работы печени. Продолжительность терапии может составлять 3-4 месяца. Принимать нужно по половине стакана 3-4 раза на день.

Сколько нужно принимать хлорофилла

Хлорофилл в натуральных источниках можно принимать по 1 стакану 2 раза на день. Если речь идет о биологически активных добавках в капсулах или таблетках, то будет достаточно 150-250 г в день (разделить на 2-3 приема).

Как использовать хлорофилл для похудения

Не нужно думать, что хлорофилл является волшебным средством, которое позволит быстро похудеть. Он принимает косвенное участие в этом процессе, а именно улучшает работу почек, печени и всего организма. При регулярном приеме хлорофилла через время можно заметить следующие результаты: уменьшение количество жиров в организме, снижение холестерина и глюкозы в крови.

В каких продуктах содержится хлорофилл

Хлорофилл в больших количествах содержится в продуктах зеленого цвета, а именно: брокколи, морские водоросли, шпинат, салат, зелень.

Вред и противопоказания

Несмотря на всю полезность, хлорофилл имеет некоторые противопоказания. Не стоит принимать лицам, у которых отмечается повышенная чувствительность к хлорофиллу и прочим составным добавкам.

При приеме могут проявляться следующие негативные реакции:

  • болезненные ощущения в грудной клетке;

  • аллергические реакции;

  • затруднительное дыхание;

  • дерматологические заболевания;

  • расстройство желудка.

Рецепт приготовления полезного напитка

Взять любую листовую зелень, огурец либо брокколи. Все ингредиенты добавить в блендер или соковыжималку. Залить небольшим количеством питьевой воды и запустить блендер. Процедить содержимое через ситечко. Выжимки поместить в морозилку или можно засушить и потом можно добавлять в любую еду. В готовый напиток стоит добавить пару капель любого жира, чтобы хлорофилл хорошо усвоился. Никаких углеводов не должно присутствовать в коктейле.

Сколько стоит хлорофилл

Жидкий хлорофилл можно приобрести в любой аптеке. Цены варьируются в пределах 700-1500 рублей.

Источник

ХЛОРОФИЛЛЫ (греческий chloros зеленый + phyllon лист) — пигменты растений, а также некоторых микроорганизмов, с помощью которых улавливается энергия солнечного света и осуществляется процесс фотосинтеза. Участвуя в фотосинтезе (см.), хлорофиллы играют огромную биол. роль.

Существует четыре вида хлорофиллов: a, b, c и d. Высшие растения содержат хлорофиллы a и b, бурые и диатомовые водоросли — хлорофиллы а и с, красные водоросли — хлорофилл d. Кроме того, некоторые фотосинтезирующие бактерии содержат аналоги хлорофиллов — бактериохлорофиллы. В основе молекул хлорофиллов лежит магниевый комплекс порфиринового цикла (см. Порфирины). К одному из пиррольных колец присоединен остаток многоатомного спирта фитола, благодаря чему хлорофиллы получили возможность встраиваться в липидный слой мембраны хлоропластов.

Выделение хлорофиллов в чистом виде и разделение их на два компонента (хлорофиллы а и b) впервые было осуществлено русским ботаником М. С. Цветом с помощью разработанного им метода хроматографии (см.). Им же было доказано, что в листьях растений хлорофиллы сопровождает ряд желтых спутников — каротиноидов (см.). Структурная формула хлорофиллов установлена Фишером (Н. Fischer) в 1940 году М. В. Ненцкий и его ученики доказали хим. родство гемоглобина (см.) и хлорофиллов растений. В изучении физиологической роли хлорофиллов большое значение имели исследования К. А. Тимирязева. Полный синтез хлорофиллов произвели независимо друг от друга Штрелль (М. Strell) и Вудворд (R. В. Woodword) в 1960 году.

Хлорофиллы являются главной составной частью пигментного аппарата высших растений, мхов, водорослей, фотосинтезирующих бактерий. Содержание их в растениях зависит от вида растения, обеспеченности минеральным питанием и других условий. Количество хлорофиллов в растениях колеблется от 1,7 до 5% в пересчете на сухой вес. Концентрация их на поверхности листа определяет интенсивность поглощения растением света, если уровень хлорофиллов не превышает 2 мг/дм2. При содержании хлорофиллов от 3 мг/дм2 и выше коэффициент поглощения света приближается к 97 —100% и не зависит от количества пигмента.

В клетках зеленого листа хлорофиллы находятся в особых органеллах — пластидах, которые называются также хлорофилловыми зернами, или хлоропластами. Каждый хлоропласт растения Mnium medium имеет объем 4,1 X 10-11 см3 и содержит 1,3*109 молекул хлорофилла, ограничен двойной липопротеидной мембраной и заполнен белковой стромой. Чередующиеся пластинки белка и окрашенных пигментно-липидных слоев образуют включения в строме (граны). Расстояния между молекулами пигмента в тонком моно- или бимолекулярном слоях невелики; каждая из пары молекул может быть связана с ферментами типа цитохрома (см. Цитохромы), способного отдавать электрон хлорофиллу, а другая — с акцептором электрона типа ферредоксина.

Процесс фотосинтеза начинается с поглощения кванта света пигментной системой растения. Участие промежуточных систем в цепи переноса электрона показано на схеме:

Процесс фотосинтеза начинается с поглощения кванта света пигментной системой растения. Участие промежуточных систем в цепи переноса электрона показано на схеме

где X — хлорофилл, ЦИТ — цитохромы, ФД — ферредоксин, ФЛ — флавиновые системы, hv — квант света.

Важное значение в функционирующей фотосинтетической единице имеет процесс миграции энергии между различными формами хлорофилла. Активно функционирующая фотосинтетическая единица содержит 200—400 молекул хлорофилла, которые работают как единая светоулавливающая система, поглощающая один квант света. За один цикл работы на каждые 3000 молекул хлорофилла высвобождается одна молекула кислорода. Установлено, что спектрально различные формы хлорофилла образуют лестницу энергетических уровней, по которой поглощенная энергия «стекает» к реакционным центрам. Спектральные исследования позволили расчленить формы хлорофилла на три основные группы (коротковолновые, длинноволновые и промежуточные) в соответствии с их ролью в поглощении и переносе энергии.

У фотосинтетических бактерий также обнаружены субклеточные частицы, содержащие бактериохлорофилл. Это уплощенные диски диаметром 100 нм, носящие название хроматофоры.

Структуры пигментобелковых комплексов в организации фотосинтетических мембран различных организмов, включая бактерии, водоросли и высшие растения, сходны. Полипептиды хлорофиллобелкового комплекса синтезируются внутри хлоропластов; они состоят из главного полипептида с мол. весом (массой) 73 000 и трех минорных с молекулярным весом (массой) 47 000, 30 000 и 15 000 единиц.

Синтез и обновление пигмента в растущей зеленой ткани протекают с высокой скоростью. С возрастом ткани процесс биосинтеза хлорофилла замедляется. На первых этапах биосинтеза хлорофилла путем конденсации двух молекул δ-аминолевулиновой кислоты формируется порфо-билиноген — производное пиррола, которое в результате ряда превращений дает соединение, содержащее порфириновое ядро — протопорфирин. Из протопорфирина образуется непосредственный предшественник хлорофилла — протохлорофиллид, содержащий атом магния. Затем после присоединения многоатомного спирта фитола образуется хлорофилл.

Этапы от порфобилиногена до протопорфирина и от протопорфирина до хлорофилла а осуществляются по одной из двух схем:

Первая реакция преобладает в листьях этиолированных (то есть выросших в темноте) растений, вторая — в зеленых. Терминальные стадии биосинтеза пигментного аппарата ускоряются при участии единого полиферментного хлорофилл-синтетазного комплекса. В связи с этим естественна зависимость биосинтеза хлорофилла от скорости белкового синтеза и торможения его ингибиторами синтеза белка. Синтез пигментов замедляется также при снижении температуры и полностью прекращается при температуре ниже —2°, тогда как фотосинтез продолжается и при отрицательных температурах, вплоть до —24°. Процесс нарушается при недостаточности железа и избытке марганца.

Образование хлорофилла b происходит последовательно через хлорофилл а путем окисления. Реакция превращения идет на свету; промежуточной стадией является образование фермент-белкового комплекса.

Есть указания на зависимость скорости реакции от работы электронно-транспортной цепи и соотвественно скорости генерации НАДФН и НАДН как доноров водорода. Остаются неясными стадии синтеза на участке включения магния, превращения Mg-порфиринов, а также этерификации фитолом остатка нропионовой кислоты IV пиррольного кольца.

Способность зеленых растений образовывать в процессе фотосинтеза сложные органические вещества из двуокиси углерода и воды определяется присутствием в них хлорофиллов. При этом содержание пигментов хлорофилла а и хлорофилла Ъ не зависит от географических особенностей местности. Содержание хлорофилла а в большей степени подвержеко влиянию физиологических и экологических условий, чем содержание хлорофилла Ъ.

Описаны изменения хлорофиллов в онтогенезе растений. Их содержание возрастает в фазу кущения, в фазу цветения и завязывания плодов. По уровню хлорофилла можно определить готовность растений к цветению. После завершения ростовых процессов накопление хлорофилла прекращается, и обновление молекул пигмента происходит внутри хлоропласта, не будучи связано с образованием новых хлоропластов.

Принцип фотосенсибилизирующего действия хлорофиллов при фотосинтезе был обоснован К. А. Тимирязевым и включает возбуждение пигмента светом с переходом пигмента в синглетное или триплетное состояние и последующими обратимыми фотохимическими изменениями. Хлорофилл на разных этапах может служить фотохимическим донором или акцептором электронов.

Поскольку тетрапиррольным структурам, содержащим комплексно связанный атом железа, принадлежит важная роль в тканевом дыхании млекопитающих (см. Гемоглобин), хлорофилл и его металлопроизводные (т. е. соединения, в структуру которых вместо магния введены медь, железо, цинк, кадмий или серебро) используют в медицине в качестве антигипоксических средств. Металлопроизводные хлорофилла получили название «феофитинаты». Их антигипоксический эффект связывают с тетрапиррольной структурой и присутствием атома металла. Водорастворимые препараты хлорофилла обладают антибактериальной и противовирусной активностью, особенно Ag-феофитинат. Гемопоэтические, общетонизирующие свойства присущи хлорофиллину натрия, который используют также в качестве биостимулятора.

См. также Ассимиляция, Пигментный обмен, Пигменты, Порфирины.

Библиогр.: Годнев Т. Н. Хлорофилл, Его строение и образование в растении, Минск, 1963, библиогр.; Красновский А. А. Уровни светового регулирования фотосинтеза, в кн.: Теоретические основы фотосинтетической продуктивности, под ред. А. А. Ничипорови-ча, с. 23, М., 1972; Мецлер Д. Э. Биохимия, Химические реакции в живой клетке, пер. с англ., т. 1—2, М., 1980; Проблемы биосинтеза хлорофиллов, под ред. А. А. Шлыка, Минск, 1971; Шлык А. А. Метаболизм хлорофилла в зеленом растении, Минск, 1965, библиогр.; Е igenberg К. Ё., С г о a s-m u n W. R. a. Chan S. I. Chlorophyll a in bilayer membranes, Biochim. biophys. Acta, v. 679, p. 353, 1982; Metabolic pathways, ed. by D. M. Greenberg, v. 2, N. Y.— L., 1967; Olson J. M. Chlorophyll organization in green photosynthetic bacteria, Biochim. biophys. Acta, v. 594, p. 33, 1980.

Источник

Водоросли являются наиболее древней группой растений. Они прошли длительный эволюционный путь, приспосабливаясь к различным сменявшимся условиям на Земле.

Водоросли относятся к низшим растениям, так как не имеют тканей и органов. Тело водорослей называется талломом, или слоевищем. У некоторых водорослей есть ризоиды — нитевидные выросты, в основном предназначенные для прикрепления к субстрату. Могут выполнять функцию всасывания воды и минеральных веществ.

Обитая в водной среде, они поглощают питательные вещества всей поверхностью. Вода поглощает и рассеивает свет, поэтому по мере погружения освещенность падает. Волны красной части спектра практически не проникают на глубину свыше 12 м. А именно в этой области спектра “работает” хлорофилл. Поэтому для лучшего обеспечения фотосинтеза у многих групп водорослей появились дополнительные пигменты, поглощающие свет в синей области спектра. Для каждого отдела водорослей характерен свой набор пигментов, что отражается в их названиях.

отдел  зеленые водоросли

Зеленые водоросли не имеют дополнительных пигментов, поэтому их окраску определяет хлорофилл. Именно эта группа водорослей дала начало высшим растениям. Они широко распространены в пресных и морских водах, встречаются также на суше в увлажненных местах: в почве, на коре деревьев, на камнях. Размеры их варьируют от нескольких микрометров до метров. Они представлены различными жизненными формами: одноклеточными, колониальными, нитчатыми и многоклеточными. Представителями одноклеточных водорослей являются хламидомонада и хлорелла.

строение хламидомонады

В каких органеллах клеток водорослей содержится хлорофилл

Рис. 1

Хламидомонада представляет собой округлую клетку, вытянутую с переднего конца (рис. 1). На этом конце находится пара жгутиков, за счет которых она довольно быстро передвигается. Снаружи клетка покрыта клеточной стенкой. В центре клетки находится гаплоидное ядро (содержит одинарный набор хромосом — n). Единственная крупная пластида, или хроматофор, имеет чашевидную форму и располагается по периферии клетки, делая всю ее окрашенной. В клетке имеется обычный набор эукариотических органелл. Кроме того, на переднем конце располагается пара сократительных вакуолей, выводящих из клетки избыток воды.

В условиях неравномерного освещения хламидомонада всегда плывет на свет. Это явление называется положительным фототаксисом. Для его осуществления у хламидомонады есть специальный органоид, видимый как маленькая красная точка в основании жгутиков. Он называется стигма, или глазок.

Размножение и жизненный цикл хламидомонады

Жизненный цикл хламидомонады идет с чередованием гаплоидной и диплоидной форм (рис. 2). В благоприятных условиях хламидомонада быстро размножается бесполым путем. Достигнув определенных размеров, клетка отбрасывает жгутики и округляется. Происходит, в зависимости от вида, 1, 2 или 3 митотических деления ядра. Под оболочкой материнской клетки образуется 2, 4 или 8 мелких клеток, имеющих пару жгутиков. Оболочка материнской клетки разрывается, и мелкие клетки, называемые зооспорами, выходят в среду. Они растут и превращаются во взрослых хламидомонад. 

В каких органеллах клеток водорослей содержится хлорофилл

Рис. 2. Жизненный цикл хламидомонады

В неблагоприятных условиях у хламидомонады начинается половой процесс. Внутри родительских клеток формируются подвижные гаметы, которые выходят в воду. Гаметы, происходящие из разных родительских клеток, соединяются попарно и образуют зиготу. Она покрывается плотной оболочкой и превращается в зигоцисту, способную переживать неблагоприятные условия. При наступлении благоприятных условий в зигоцисте происходит мейоз, и из нее выходят 4 зооспоры, вырастающие во взрослую хламидомонаду.

хлорелла

В отличие от хламидомонады, хлорелла не имеет жгутиков и удерживается в верхних слоях воды за счет низкой плотности. Выглядит она как зеленая муть в воде — вода «цветет» (рис. 3).

В каких органеллах клеток водорослей содержится хлорофилл

Рис. 3

Размножается она только бесполым путем (рис. 4), а неблагоприятные условия переживает в форме цисты, в которые превращаются обычные клетки. Для хлореллы характерна высокая скорость фотосинтеза, она богата белками и липидами, благодаря чему ее выращивают на корм скоту и применяют для регенерации кислорода в космических аппаратах.

В каких органеллах клеток водорослей содержится хлорофилл

Рис. 4

Представителями нитчатых зеленых водорослей являются улотрикс и спирогира.

улотрикс

Улотрикс растет в прикрепленном состоянии (рис. 5). Нижняя клетка нити, называемая прикрепительной (ризоидальной) клеткой, плотно врастает в поверхность какого-либо подводного предмета, образует толстую клеточную стенку, ее цитоплазма отмирает. Остальные клетки имеют одинаковое строение и способны к делению и фотосинтезу. За счет их деления водоросль растет в длину.

В каких органеллах клеток водорослей содержится хлорофилл

Рис. 5

Улотрикс размножается половым и бесполым путем (рис. 6).

Бесполое размножение улотрикса осуществляется с помощью подвижных 4-жгутиковых зооспор. Они образуются путем митотического деления из клеток средней части нити. Прикрепившись к какой-нибудь поверхности, они сбрасывают жгутики и делятся митозом в плоскости, параллельной поверхности. Нижняя клетка превращается в прикрепительную, а верхняя продолжает делиться, образуя нить. Нити улотрикса могут размножаться фрагментацией.

В неблагоприятных условиях улотрикс размножается половым путем. В клетках нити формируются подвижные гаметы. Они, соединяясь попарно, образуют зиготу, которая превращается с зигоцисту, переживающую неблагоприятные условия. В благоприятных условиях в ней происходит мейоз, и образовавшиеся гаплоидные клетки дают начало новым нитям улотрикса.

В каких органеллах клеток водорослей содержится хлорофилл

Рис. 6 

спирогира

Спирогира представляет собой длинные плавающие в толще воды нити, состоящие из крупных клеток (рис. 7). Центр клетки занимает крупная центральная вакуоль, цитоплазма находится в пристенном слое и пронизывает вакуоль отдельными тяжами. Особенность спирогиры: один или несколько лентовидных хроматофоров, закрученных в спираль, и гаплоидное ядро.

В каких органеллах клеток водорослей содержится хлорофилл

Рис. 7

Нить растет за счет деления всех клеток.

При фрагментации нити каждый ее кусочек может дать начало новой нити. Так происходит вегетативное размножение спирогиры. Часто в водоемах спирогира образует густые сплетения, похожие на зеленую вату. 

Половой процесс — конъюгация — у спирогиры происходит между обычными клетками двух разных нитей (рис. 8).

В каких органеллах клеток водорослей содержится хлорофилл

Рис. 8

При сближении нитей между ними образуется конъюгационная трубка. Содержимое одной клетки, принадлежащей к «+»-нити, перетекает в другую, принадлежащую «–»-нити.

Происходит слияние клеток, а затем и ядер. Формируется диплоидная зигота, которая окружается плотной оболочкой — образуется зигоспора. Зигота делится мейозом, образуя 4 гаплоидные клетки.

В дальнейшем 3 из 4 клеток погибают. Оставшаяся прорастает в гаплоидную нить спирогиры.

сифоновые водоросли

Одной из самых древних групп зеленых водорослей являются сифоновые водоросли. У них таллом образован, как правило, одной гигантской клеткой. В цитоплазме кроме одного или нескольких ядер содержится также один или несколько хлоропластов. Многочисленные хлоропласты обладают дисковидной или веретеновидной формой; когда хлоропласт один, он имеет сетчатое строение. Примерами таких водорослей являются каулерпа (рис. 9) и ацетабулярия (рис. 10).

В каких органеллах клеток водорослей содержится хлорофилл       В каких органеллах клеток водорослей содержится хлорофилл

Рис. 9                                                                           Рис. 10

Ацетабулярия

Нижняя часть одноклеточного слоевища (ризоид) находится в грунте. В ризоиде расположено ядро. Вверх растет ножка, достигающая в длину нескольких сантиметров. На ее конце формируется шляпка. Для размножения по периферии шляпки образуются споры, из которых вырастают новые растения.

отдел Бурые водоросли

С помощью дополнительных пигментов они могут осуществлять фотосинтез на глубине до 30 метров. Они встречаются только в морях и представляют собой крупные растения (до 30 метров в длину), состоящие из диплоидных клеток. Таллом образует ризоиды для прикрепления к субстрату (рис. 11). Многие из них растут в приливно-отливной зоне (литорали) и во время отлива оказываются на суше. Для защиты от высыхания бурые водоросли образуют много слизистых веществ. Представителями бурых водорослей является фукус (рис. 12) и ламинария (рис. 13). Таллом фукуса содержит многочисленные пузырьки воздуха для увеличения плавучести.

В каких органеллах клеток водорослей содержится хлорофилл В каких органеллах клеток водорослей содержится хлорофилл В каких органеллах клеток водорослей содержится хлорофилл

   Рис. 11                                    Рис. 12                                                  Рис. 13

В жизненном цикле бурых водорослей наблюдается чередования гаплоидного гаметофита и диплоидного спорофита с преобладанием спорофита.

Размножаются бурые водоросли половым и бесполым путем. Диплоидные растения посредством мейоза образуют гаплоидные клетки. У одних (род фукус) они становятся гаметами, при слиянии которых образуется зигота, дающая начало новому растению. У большинства же продуктами мейоза являются споры, которые дают начало гаплоидной стадии (рис. 14).

В каких органеллах клеток водорослей содержится хлорофилл

Рис. 14. Жизненный цикл ламинарии

Гаплоидная стадия представляет собой мелкие нитевидные образования, которые недолго живут на дне моря. Они раздельнополы. На них формируются многоклеточные (!) половые органы, в которых образуются гаметы: яйцеклетки и сперматозоиды. Они, сливаясь, образуют зиготу, из которой вырастают крупные диплоидные растения.

Отдел красные водоросли (багрянки)

На глубинах более 30 метров света не хватает и для бурых водорослей. Там обитают красные водоросли, пигменты которых способны использовать синий свет. Основные пигменты: хлорофилл, каротиноиды (желто-оранжевые), фикобилины (красно-синие). Встречаются они и на более мелких участках дна, вплоть до границы воды и суши. В основном это морские растения средних размеров (десятки сантиметров в длину), но среди них есть и обитатели пресных вод, и одноклеточные представители. Представители: порфира (рис. 15) и филлофора (рис. 16). 

      В каких органеллах клеток водорослей содержится хлорофилл  В каких органеллах клеток водорослей содержится хлорофилл

Рис. 15                                                    Рис. 16

В пресных водоемах (ручьях и болотах) распространен батрахоспермум ( “жабья икра”) в виде разветвленных сине-зеленых кустиков, окутанных бесцветной студенистой слизью, придающей ему отдаленное сходство с икрой лягушек или жаб (рис. 17).

В каких органеллах клеток водорослей содержится хлорофилл

Рис. 17. 

У красных водорослей в жизненном цикле одинаково представлены гаплоидная и диплоидная стадии, часто они образуют единый таллом. Полностью отсутствуют жгутиковые стадии жизненного цикла. 

Многие виды красных водорослей употребляются в пищу, используются для получения агар-агара и медицинских препаратов.

значение водорослей

  1. Одни из основных поставщиков кислорода наряду с таежными и тропическими лесами.

  2. В морях они являются основными продуцентами органических веществ.

  3. Начальное звено пищевых цепей водных экосистем.

  4. Являются местом обитания и размножения водных организмов.

  5. Пищевой продукт для человека.

  6. Корм для скота.

  7. Сырье для получения лекарственных веществ, микроэлементов (йода и др.), красителей, агар-агара и т. п.

Источник