В каких реакциях неметаллы проявляют восстановительные свойства
Атомы неметаллов, а также простые вещества, образованные неметаллами, могут проявлять, как окислительные, так и восстановительные свойства – всё зависит от того, с какими веществами неметаллы вступают в реакцию.
Окислительные свойства неметаллов проявляются при их взаимодействии:
- с металлами:
- Подгруппа углерода (IV):
-  Общая схема реакций:
Me+C → карбиды;
Me+Si → силициды -  Примеры:
4Al0+3C0=Al4+3C3-4 
 -  Общая схема реакций:
 - Подгруппа азота (V):
-  Общая схема реакций:
Me+N → нитриды;
Me+P → фосфиды -  Примеры:
2Al0+N20=2Al+3N-3 
 -  Общая схема реакций:
 - Халькогены(VI):
-  Общая схема реакций:
Me+O2 → оксиды;
Me+S → сульфиды
Me+Se → селениды;
Me+Te → теллуриды -  Примеры:
4Al0+3O20=2Al2+3O3-2 
 -  Общая схема реакций:
 - Галогены (VII):
-  Общая схема реакций:
Me+F2 → фториды;
Me+Cl2 → хлориды
Me+Br2 → бромиды;
Me+I2 → йодиды -  Примеры:
2Al0+3F20=2Al+3F3-1 
 -  Общая схема реакций:
 
 - Подгруппа углерода (IV):
 - с водородом с образованием летучих водородных соединений:
H20+S0 ↔ H2+1S-2 – сероводород
H20+Cl20 ↔ 2H+1Cl-1 – хлороводород
3H20+N20 ↔ 2N-3H3+1 – аммиак - с другими неметаллами, у которых более низкая электроотрицательность (см. таблицу электроотрицательности) – фтор самый сильный окислитель из всех неметаллов, т.к. имеет самую высокую электроотрицательность:
2P0+5S0=P2+5S5-2
H20+F20=2H+1F-1 - с некоторыми сложными веществами:
- кислород при взаимодействии со сложными веществами выступает в роли окислителя:
C-4H4+2O20 → C+4O2-2+2H2O-2;
2S+4O2+O20 → 2S+6O3-2 - хлор окисляет хлорид железа (II в III):
2Fe+2Cl2-1+Cl20 = 2Fe+3Cl3-1 - хлор вытесняет йод в свободном виде из раствора йодида калия:
2K+1I-1+Cl20 = K+1Cl-1+I20 - реакция галогенирования метана:
C-4H4+Cl20 → C-2H3Cl-1+HCl-1 
 - кислород при взаимодействии со сложными веществами выступает в роли окислителя:
 
Восстановительные свойства неметаллов проявляются при их взаимодействии:
- по отношению к фтору все неметаллы проявляют восстановительные свойства;
 - все неметаллы, кроме фтора,  являются восстановителями при реакции с кислородом, образуя оксиды неметаллов:
S0+O20 → S+4O2-2
N20+O20 → 2N+2O-2
C0+O20 → C+4O2-2 - многие неметаллы выступают в роли восстановителя в реакциях со сложными веществами-окислителями:
H20+Cu+2O → Cu0+H2+1O
6P0+5KCl+5O3 → 5KCl-1+3P2+5O5
C0+4HN+5O3 → C+4O2↑+4N+4O2+2H2O 
В некоторых реакциях один и тот же неметалл выступает и в роли окислителя, и в роли восстановителя – такие реакции носят название диспропорционирования:
- Cl20+H2O ↔ HCl-1+HCl+1O
 - 3S0+6NaOH = 2Na2S-2+Na2S+4O3+3H2O
 - 3Cl20+6KOH = 5KCl-1+KCl+5O3+3H2O
 
Оксиды неметаллов
- несолеобразующие оксиды: SiO, N2O, NO, CO;
 - солеобразующие оксиды (кислотные оксиды) – все остальные оксиды неметаллов:
- газы: SO2, CO2, NO2 и др.;
 - жидкости: SO3, N2O3 и др.;
 - твердые в-ва: P2O5, SiO2 (единственный расвторимый в воде кислотный оксид).
 
 
Кислотные оксиды являются ангидридами кислот, например, P2O5 является ангидридом кислоты H3PO4.
При растворении в воде кислотных оксидов образуются гидроксиды, являющиеся кислотами:
N2+5O5+H2O = 2HN+5O3
В случае, если неметалл образует несколько кислородсодержащих кислот, то с увеличением степени окисления неметалла увеличивается и сила кислоты:
H2S+4O3
 H2S+6O4
 Вторая кислота более сильная
Водородные соединения неметаллов
| Группы | IV | V | VI | VII | 
|---|---|---|---|---|
| Общие формулы водородных соед-й | ЭН4 | ЭН3 | ЭН2 | ЭН | 
| 2 период | CH4 метан  | NH3 аммиак  | H2O вода  | HF фторо- водород  | 
| 3 период | SiH4 силан  | PH3 фосфин  | H2S серо- водород  | HCl хлоро- водород  | 
| 4 период | AsH3 арсин  | H2Se селено- водород  | HBr бромо- водород  | |
| 5 период | H2Te теллуро- водород  | HI йодо- водород  | 
Все водородные соединения неметаллов образованы ковалентными связями, имеют молекулярное строение и являются газами при н.у. (за исключением воды).
Кислотные свойства водородных соединений, образованных неметаллами, в одном периоде увеличиваются с возрастанием группы неметалла (HCl более сильная кислота, чем PH3). Это обстоятельство объясняется увеличением полярности связи неметалл-водород.
Если брать кислотно-основные свойства в группах, то, кислотные свойства будут увеличиваться с увеличением периода – HF является самой слабой кислотой в VII группе, а HI – самой сильной. Это обстоятельство объясняется снижением прочности связи неметалл-водород по причине ее удлинения.
В заключение осталось сказать как ведут себя водородные соединения неметаллов в реакциях с водой:
- Метан и силан плохо растворяются в воде;
 - Аммиак и фосфин, взаимодействуя с водой, образуют гидроксид аммония и гидроксид фосфония, являющиеся слабыми основаниями;
 - Сероводород, селеноводород, теллуроводород и все галогеноводороды (от фтороводорода до йодоводорода) – образуют кислоты той же формулы, что и сами водородные соединения.
 
И последнее – водородные соединения неметаллов в окислительно-восстановительных реакциях всегда являются восстановителями, поскольку здесь неметаллы имеют низшую степень окисления.
См. далее: Физические свойства неметаллов.
Источник
В химических реакциях неметаллы могут проявить себя и как восстановители, и как окислители. Из общих химических свойств неметаллов отметим их способность взаимодействовать с металлами, с водородом и кислородом.
Взаимодействие неметаллов с металлами
В реакциях с металлами неметаллы проявляют себя как окислители.
А. Особенно активно с металлами взаимодействуют галогены. В результате реакций соединения образуются соли — галогениды.
Например, при взаимодействии алюминия с иодом образуется иодид алюминия AlI3 :
2Al0+3I20⟶H2O2Al+3I3−1.
Вода в этой химической реакции является катализатором.
Видеофрагмент:
Взаимодействие алюминия с иодом
Железо активно реагирует с хлором, образуя хлорид железа((III)) FeCl3:
2Fe0+3Cl20⟶to2Fe+3Cl3−1.
Видеофрагмент:
Взаимодействие железа с хлором
Б. Металлы реагируют с серой, образуя сульфиды.
Реакция соединения алюминия с серой начинается после того, как смесь веществ нагрели. Продуктом реакции является сульфид алюминия AlS32:
2Al0+3S0⟶toAl2+3S3−2.
Видеофрагмент:
Взаимодействие алюминия с серой
Химическое взаимодействие между натрием и серой протекает при простом механическом смешивании. В результате образуется сульфид натрия NaS2:
2Na0+S0→Na2+1S−2.
Видеофрагмент:
Взаимодействие натрия с серой
Взаимодействие неметаллов с водородом
По сравнению с другими неметаллами водород имеет невысокую электроотрицательность. В силу этой причины в реакциях с другими неметаллами, как правило, данный химический элемент будет восстановителем, а другие неметаллы — окислителями.
В таких реакциях образуются летучие водородные соединения, состав молекул которых отвечает общей формуле RHx, где (R) — неметалл, а (х) — индекс, указывающий число атомов водорода в молекуле образовавшегося вещества. Этот индекс численно совпадает с валентностью неметалла, с которым водород соединяется.
Например, в реакции соединения водорода с хлором образуется газ хлороводород (HCl):
H20+Cl20⟶to2H+1Cl−1.
Видеофрагмент:
Взаимодействие водорода с хлором
Взаимодействие водорода с азотом происходит при выcокой температуре и давлении. В промышленности для ускорения данного процесса используют катализатор. Продуктом взаимодействия этих двух неметаллических веществ является газ аммиак NH3:
N20+3H20⇄to,p2N−3H3+1.
Взаимодействие неметаллов с кислородом
Кислород имеет высокую электроотрицательность, поэтому в реакциях с другими неметаллами он является окислителем, а другие неметаллы — восстановителями.
В результате соединения кислорода с другими неметаллами образуются оксиды.
Например, сера сгорает в кислороде, образуя сернистый газ или оксид серы((IV)) SO2:
S0+O20→S+4O2−2.
Фосфор энергично cгорает в кислороде ярким пламенем. В ходе реакции образуются белые клубы оксида фосфора((V)) PO52:
4P0+5O20→2P2+5O5−2.
Видеофрагмент:
Горение фосфора в кислороде
В то же самое время взаимодействие кислорода с химически малоактивным азотом протекает медленно и начинается только при очень высокой температуре. Продуктом реакции является газообразный оксид азота((II)) NO:
N20+O20⟶to2N+2O−2.
Такая химическая реакция протекает в атмосфере при разряде молнии, а также в цилиндрах двигателей при сгорании топлива.
Источник
План:
1. Окислительные и восстановительные свойства неметаллов в зависимости от их положения в ряду электроотрицательности.
1 .Окислительные и восстановительные свойства неметаллов в зависимости от их положения в ряду электроотрицательности.
Исходя из положения неметаллов в периодической системе Менделеева, можно выявить свойства для них характерные. Можно определить количество электронов на внешнем энергетическом подуровне, местоположение неметаллов в конце малых и больших периодов, число электронов на внешнем подуровне соответствует номеру группы. В периоде идет возрастание способности присоединять электроны, а в группе это свойство можно наблюдать по мере уменьшения радиуса (в периоде снизу вверх).
Для неметаллов характерно свойство присоединять электроны, проявлять окислительные свойства. Наиболее они выражены у элементов VI и VII групп. Самый сильный окислитель – фтор.
Окислительные свойства неметаллов возрастают в последовательности:
Фтор никогда не проявляет восстановительных свойств. Другие неметаллы и вещества, им соответствующие, могут проявлять восстановительные свойства, но они слабее, чем у металлов.
Восстановительная способность неметаллов увеличивается от кислорода к кремнию в ряду:
Так, хлор напрямую не взаимодействует с кислородом, но можно получить оксиды хлора (Cl2O, ClO2, Cl2O7), в которых хлор проявляет положительную степень окисления. Азот при высоких температурах вступает в реакцию с кислородом, выказывая восстановительные свойства:
Сера проявляет как окислительные, так и восстановительные свойства:
S + O2 = SO2 – окислительные свойства серы;
S + H2 = H2S – восстановительные свойства серы.
Примеры окислительно-восстановительных реакций:
· восстановительные свойства – образование оксидов и фторидов неметаллов;
· окислительные свойства неметаллов – образование галогенидов, сульфидов, карбидов, нитридов, фосфидов.
| К о м а н д а А | К о м а н д а B | 
|  Na + S = Fe + Cl2 = H2 + N2 = H2 + Cl2 = H2 + О2 = СH4 + O2 =  |  Mg + F2 = S + O2 = C + O2 = S + F2 = P + Cl2 = H2 + CuO =  | 
Вопросы для самоконтроля
¾ Назовите тип кристаллической решетки, который характерен для металлов. Его особенности.
¾ Назовите типы кристаллических решеток, характерные для неметаллов.
¾ Назовите тип химической связи в металлах. Его особенности.
¾ Назовите тип химической связи в неметаллах.
¾ Определить свойства, характерные неметаллам (ставят знак +) и металлам (ставят знак – ):
1. Твердые
2. Встречаются и в твердом, и в жидком, и в газообразном видах
3. Не имеют металлического блеска
4. Электро- и теплопроводны
5. Большинство не проводят электрический ток
6. Ковкие, пластичные, тягучие
7. В твердом состоянии – хрупкие
8. Имеют металлический блеск
¾ Вставьте слова, пропущенные в тексте.
 Атомы ____ в отличие от атомов ____ легко принимают наружные электроны, являются ____
¾ Вставьте слова, пропущенные в тексте.
 Неметаллические свойства элементов с увеличением порядкового номера в периодах ____
 В группах неметаллические свойства элементов ____
¾ Пользуясь периодической таблицей, запишите молекулярные формулы высших кислородных соединений неметаллов III периода. Как будет изменяться кислотный характер?
¾ Запишите формулы водородных соединений элементов VII А группы. Как изменяются кислотные свойства с увеличением порядкового номера элемента?
¾ Водород занимает в периодической таблице два места: в I А группе и в VII А группе. Запишите молекулярные формулы водородных соединений Na, K, Cl, F.
¾ Какую высшую степень окисления имеют следующие элементы?
| Азот | +6 | 
| Хлор | +5 | 
| Сера | +4 | 
| Кремний | +7 | 
¾ Определите, окислителем или восстановителем является сера в следующих реакциях:
1 H2+S=H2S
2 2SO2 + O2 → 2SO3
¾ Наиболее ярко выраженные неметаллические свойства проявляет вещество, образованное из атомов, в которых число электронов во внешнем электронном слое равно____.
• 4 • 5 • 6 • 7
¾ Наиболее электроотрицательными являются атомы…..
• серы • фосфора • кремния • хлора
¾ Типичному неметаллу соответствует следующая схема распределения электронов по электронным слоям:
a) 2, 1
b) 2, 8, 2
c) 2, 8, 7
ПЛАН ЗАНЯТИЯ № 1
Дисциплина:Химия.
Тема: Предмет органической химии. Сравнение органических веществ с неорганическими.
Цель занятия:Выяснить сущность предмета органической химии, охарактеризовать природные, искусственные и синтетические органические вещества. Сравнить органические вещества с неорганическими. Повторить что такое валентность, химическое строение как порядок соединения атомов в молекулы по валентности.
Планируемые результаты
Предметные: Понимать роль химии в естествознании, ее связь с другими естественными науками, значение в жизни современного общества, уметь характеризовать основные классы неорганических и органических соединений, владетьпредставлениями о месте химии в современной научной картине мира; понимание роли химии в формировании кругозора и функциональной грамотности человека для решения практических задач.
Метапредметные:использование различных источников для получения химической информации, умение оценить ее достоверность для достижения хороших результатов в профессиональной сфере;
Личностные:чувство гордости и уважения к истории и достижениям отечественной химической науки;
Норма времени:2 часа
Вид занятия:Лекция.
План занятия:
1. Предмет органической химии.
2. Природные, искусственные и синтетические органические вещества.
3. Сравнение органических веществ с неорганическими.
4. Валентность.
5. Химическое строение как порядок соединения атомов в молекулы по валентности.
Оснащение:Учебник, модели молекул органических соединений.
Литература:
1. Химия 10 класс: учеб. для общеобразоват. организаций с прил. на электрон. Носителе (DVD) / Г.Е. Рудзитис, Ф.Г. Фельдман. – М.:Просвещение, 2014. -208 с.: ил.
2. Химия для профессий и специальностей технического профиля: учебник для студ. учреждений сред. проф. образования / О.С.Габриелян, И.Г. Остроумов. – 5 – изд., стер. – М.: Издательский центр «Академия», 2017. – 272с., с цв. ил.
Преподаватель:Тубальцева Ю.Н.
Источник
Химические
 свойства неметаллов
В соответствии с численными
 значениями относительных электроотрицательностей окислительные способности неметаллов
 увеличивается в следующем порядке: Si, B, H, P, C, S, I, N, Cl,
 O, F.
Неметаллы как окислители
Окислительные свойства неметаллов
 проявляются при их взаимодействии:
·        
 с
 металлами: 2Na + Cl2 = 2NaCl;
·        
 с
 водородом: H2 + F2 = 2HF;
·        
 с
 неметаллами, которые имеют более низкую электроотрицательность: 2Р + 5S = Р2S5;
·        
 с
 некоторыми сложными веществами: 4NH3 + 5O2 = 4NO + 6H2O,
2FeCl2
 + Cl2 = 2 FeCl3.
Неметаллы как восстановители
1.    
 Все
 неметаллы (кроме фтора) проявляют восстановительные свойства при взаимодействии
 с кислородом:
S + O2
 = SO2, 2H2 + O2 = 2H2О.
Кислород
 в соединении с фтором может проявлять и положительную степень окисления,
 т. е. являться восстановителем. Все остальные неметаллы проявляют
 восстановительные свойства. Так, например, хлор непосредственно с кислородом не
 соединяется, но косвенным путем можно получить его оксиды (Cl2O, ClO2,
 Cl2O2), в которых хлор проявляет положительную степень
 окисления. Азот при высокой температуре непосредственно соединяется с
 кислородом и проявляет восстановительные свойства. Еще легче с кислородом
 реагирует сера.
2.    
 Многие
 неметаллы проявляют восстановительные свойства при взаимодействии со сложными
 веществами:
ZnO + C = Zn + CO, S + 6HNO3 конц = H2SO4
 + 6NO2 + 2H2О.
3.    
 Существуют
 и такие реакции, в которых один и тот же неметалл является одновременно и
 окислителем и восстановителем:
Cl2
 + H2О = HCl + HClO.
4.    
 Фтор
 ― самый типичный неметалл, которому нехарактерны восстановительные свойства,
 т. е. способность отдавать электроны в химических реакциях.
Соединения неметаллов
Неметаллы могут образовывать
 соединения с разными внутримолекулярными связями.
Виды соединений неметаллов
Общие формулы водородных
 соединений по группам периодической системы химических элементов приведены в таблицe:
I  | II  | III  | IV  | V  | VI  | VII  | 
RH  | RH2  | RH3  | RH4  | RH3  | H2R  | HR  | 
| Нелетучие водородные соединения | Летучие водородные соединения | |||||
С металлами водород образует (за
 некоторым исключением) нелетучие соединения, которые являются твердыми
 веществами немолекулярного строения. Поэтому их температуры плавления
 сравнительно высоки. С неметаллами водород образует летучие соединения
 молекулярного строения (например, фтороводород HF, сероводород H2S,
 аммиак NH3, метан CH4). В обычных условиях это газы или
 летучие жидкости. При растворении в воде водородные соединения галогенов, серы,
 селена и теллура образуют кислоты той же формулы, что и сами водородные
 соединения: HF, HCl, HBr, HI, H2S, H2Se, H2Te.
 При растворении в воде аммиака образуются аммиачная вода, обычно обозначаемая
 формулой NH4OH и называемая гидроксидом аммония. Ее также обозначают
 формулой NH3∙H2O и называют гидратом аммиака. 
С кислородом неметаллы образуют
 кислотные оксиды. В одних оксидах они проявляют максимальную степень окисления,
 равную номеру группы (например, SO2, N2O5), а
 других ― более низкую (например, SO2, N2O3).
 Кислотным оксидам соответствуют кислоты, причем из двух кислородных кислот
 одного неметалла сильнее та, в которой он проявляет более высокую степень
 окисления. Например, азотная кислота HNO3 сильнее азотистой HNO2,
 а серная кислота H2SO4 сильнее сернистой H2SO3.
 
Характеристики кислородных соединений неметаллов
1.    
 Свойства
 высших оксидов (т. е. оксидов, в состав которых входит элемент данной
 группы с высшей степенью окисления) в периодах слева направо постепенно
 изменяются от основных к кислотным.
2.    
 В
 группах сверху вниз кислотные свойства высших оксидов постепенно ослабевают. Об
 этом можно судить по свойствам кислот, соответствующих этим оксидам.
3.    
 Возрастание
 кислотных свойств высших оксидов соответствующих элементов в периодах слева
 направо объясняется постепенным возрастанием положительного заряда ионов этих
 элементов.
4.    
 В
 главных подгруппах периодической системы химических элементов в направлении
 сверху вниз кислотные свойства высших оксидов неметаллов уменьшаются.
Источник
Химические элементы-неметаллы.
Химические элементы, образующие простые вещества-неметаллы, располагаются в правом верхнем углу ПСХЭ Д.И. Менделеева. Таких химических элементов всего 16. Слева направо по периоду и снизу вверх по главной подгруппе радиусы атомов химических элементов уменьшаются, окислительные свойства и значения относительной электроотрицательности увеличиваются. Самый электроотрицательный элемент – фтор.
Особенностями строения атомов неметаллов по сравнению с металлами являются сравнительно небольшие атомные радиусы и большое число внешних электронов (как правило, 4 и более). Для большинства неметаллов будут более характерны окислительные свойства – им легче принимать электроны, чем отдавать.
Строение и физические свойства простых веществ-неметаллов.
Простых веществ-неметаллов больше, чем химических элементов-неметаллов. Это обусловлено явлением аллотропии. Аллотропией называют способность атомов одного и того же химического элемента образовывать несколько простых веществ – аллотропных модификаций.
Например, химический элемент кислород образует две аллотропные модификации: кислород (необходимый для дыхания) и озон (защищающий Землю от УФ-лучей). Химический элемент сера образует три аллотропные модификации, самая устойчивая из которых при комнатной температуре – ромбическая сера. Известно несколько аллотропных модификаций углерода. Среди них алмаз, графит и фуллерен.
В простых веществах-неметаллах реализуется ковалентная неполярная химическая связь. Кристаллические структуры этих веществ могут быть атомными или молекулярными. Вещества с атомной кристаллической решеткой отличаются тугоплавкостью, твердостью, нелетучестью. Атомную кристаллическую решетку имеют кремний, алмаз, графит, бор. Вещества с молекулярной кристаллической решеткой легкоплавки и летучи. Во-первых, это газообразные при н. у. неметаллы (водород, кислород, хлор, фтор), единственный жидкий при н. у. неметалл – бром, твердые неметаллы (сера, белый фосфор, йод).
Окислительные свойства неметаллов. В реакциях с металлами неметаллы всегда являются окислителями. При взаимодействии металлов с кислородом образуются, как правило, оксиды. Например, при горении магния в кислороде образуется оксид магния:
При взаимодействии металлов с галогенами образуются галогениды металлов. Например, при взаимодействии железа с хлором образуется хлорид железа(III):
При взаимодействии некоторых активных металлов с водородом образуются гидриды металлов. Например, при нагревании натрия с водородом образуется гидрид натрия:
При нагревании активных металлов с азотом (только литий реагирует с азотом без нагревания) образуются нитриды, в которых азот проявляет степень окисления -3. Например, при нагревании калия с азотом образуется нитрид калия:
Другие бинарные соединения металлов также образуются при взаимодействии металлов с соответствующими неметаллами. При нагревании железного и серного порошков образуется сульфид железа(II):
При взаимодействии магния с кремнием образуется силицид магния:
Неметаллы могут выступать в роли окислителей не только в реакциях с металлами, но и с другими неметаллами, значения относительной электроотрицательности которых будут ниже.
Например, при взаимодействии водорода с хлором водород проявляет восстановительные свойства, а хлор – окислительные:
При горении серы в кислороде: сера – восстановитель, кислород – окислитель:
Кислород и некоторые другие неметаллы могут выступать в роли окислителей и в реакциях со сложными веществами. Горение метана в кислороде:
Реакции замещения более активными галогенами менее активных в солях:
Восстановительные свойства неметаллов. Восстановительные свойства неметаллов проявляются в реакциях как с другими (более электроотрицательными) неметаллами, так и с некоторыми сложными веществами.
В реакциях с фтором все неметаллы проявляют восстановительные свойства. А с кислородом только фтор будет выступать в роли окислителя. При взаимодействии азота с кислородом под действием электрического разряда образуется монооксид азота. Азот в данном случае выступает в роли восстановителя:
При взаимодействии фосфора с избытком хлора образуется пентахлорид фосфора:
Сера проявляет восстановительные свойства, например, в реакции с концентрированной серной кислотой, в результате которой образуется сернистый газ и вода:
В составе серной кислоты сера – окислитель, а простое вещество сера – восстановитель.
Источник