В какой реакции углерод проявляет восстановительные свойства в реакции

В какой реакции углерод проявляет восстановительные свойства в реакции thumbnail

Химические свойства углерода

Углерод способен образовывать несколько аллотропных модификаций. Это алмаз (наиболее инертная аллотропная модификация), графит, фуллерен и карбин.

Древесный уголь и сажа представляют собой аморфный углерод. Углерод в таком состоянии не имеет упорядоченной структуры и фактически состоит из мельчайших фрагментов слоев графита. Аморфный углерод, обработанный горячим водяным паром, называют активированным углем. 1 грамм активированного угля из-за наличия в нем множества пор имеет общую поверхность более трехсот квадратных метров! Благодаря своей способности поглощать различные вещества активированный уголь находит широкое применение как наполнитель фильтров, а также как энтеросорбент при различных видах отравлений.

С химической точки зрения аморфный углерод является наиболее активной его формой, графит проявляет среднюю активность, а алмаз является крайне инертным веществом. По этой причине, рассматриваемые ниже химические свойства углерода следует прежде всего относить к аморфному углероду.

Восстановительные свойства углерода

Как восстановитель углерод реагирует с такими неметаллами как, например, кислород, галогены, сера.

В зависимости от избытка или недостатка кислорода при горении угля возможно образование угарного газа CO или углекислого газа CO2:

С + О2 = СО2; 2С + О2 = 2СО

При взаимодействии углерода со фтором образуется тетрафторид углерода:

C + 2F2 = CF4

При нагревании углерода с серой образуется сероуглерод CS2:

2S + C = CS2

Углерод способен восстанавливать металлы после алюминия в ряду активности из их оксидов. Например:

2Fe2O3 + 3C = 4Fe + 3CO2

C + CuO = CO↑ + Cu

Также углерод реагирует и с оксидами активных металлов, однако в этом случае наблюдается, как правило, не восстановление металла, а образование его карбида:

СаО + 3С = СаС2 + СО↑

2Al2O3 +9C = Al4C3 + 6CO↑

Взаимодействие углерода с оксидами неметаллов

Углерод вступает в реакцию сопропорционирования с углекислым газом CO2:

2.3.4. Химические свойства углерода и кремния.

Одним из наиболее важных с промышленной точки зрения процессов является так называемая паровая конверсия угля. Процесс проводят, пропуская водяной пар через раскаленный уголь. При этом протекает следующая реакция:

2.3.4. Химические свойства углерода и кремния.

При высокой температуре углерод способен восстанавливать даже такое инертное соединение как диоксид кремния. При этом в зависимости от условия возможно образование кремния или карбида кремния (карборунда):

2С + SiO2 = Si + 2CO↑

3С + SiO2 = SiС + 2CO↑

Также углерод как восстановитель реагирует с кислотами окислителями, в частности, концентрированными серной и азотной кислотами:

C + 2H2SO4 = CO2↑ + 2SO2↑ + 2H2O

C + 4HNO3 = CO2↑ + 4NO2↑ + 2H2O

Окислительные свойства углерода

Химический элемент углерод не отличается высокой электроотрицательностью, поэтому образуемые им простые вещества редко проявляют окислительные свойства по отношению к другим неметаллам.

Примером таких реакций является взаимодействие аморфного углерода с водородом при нагревании в присутствии катализатора:

C + 2H2 = CH4

а также с кремнием при температуре 1200-1300 оС:

C + Si = SiC

Окислительные свойства углерод проявляет по отношению к металлам. Углерод способен реагировать с активными металлами и некоторыми металлами средней активности. Реакции протекают при нагревании:

2C + Ca = CaC2

3С + 4Al = Al4C3

Карбиды активных металлов гидролизуются водой:

CaC2 + 2Н2О = Са(OH)2 + C2Н2↑

Al4C3 + 12H2O = 4Al(OH)3 + 3CH4↑

а также растворами кислот-неокислителей:

CaC2 + 2НCl = СаCl2 + C2Н2↑

Al4C3 + 12HCl = 4AlCl3 + 3CH4↑

При этом образуются углеводороды, содержащие углерод в той же степени окисления, что и в исходном карбиде.

Химические свойства кремния

Кремний может существовать, как и углерод в кристаллическом и аморфном состоянии и, также, как и в случае углерода, аморфный кремний существенно более химически активен, чем кристаллический.

Иногда аморфный и кристаллический кремний, называют его аллотропными модификациями, что, строго говоря, не совсем верно. Аморфный кремний представляет собой по сути конгломерат беспорядочно расположенных друг относительно друга мельчайших частиц кристаллического кремния.

Взаимодействие кремния с простыми веществами

неметаллами

При обычных условиях кремний ввиду своей инертности реагирует только со фтором:

Si + 2F2 = SiF4

С хлором, бромом и йодом кремний реагирует только при нагревании. При этом характерно, что в зависимости от активности галогена, требуется и соответственно различная температура:

Так с хлором реакция протекает при 340-420 оС:

Si + 2Cl2 = SiCl4 хлорид кремния (IV)

С бромом – 620-700 оС:

Si + 2Br2 = SiBr4 бромид кремния (IV)

С йодом – 750-810 оС:

Si + 2I2 = SiI4 йодид кремния (IV)

Все галогениды кремния легко гидролизуются водой:

SiF4 + 3H2O = H2SiO3 + 4HF↑

SiCl4 + 3H2O = H2SiO3 + 4HCl↑

а также растворами щелочей:

2.3.4. Химические свойства углерода и кремния.

Реакция кремния с кислородом протекает, однако требует очень сильного нагревания (1200-1300оС) ввиду того, что прочная оксидная пленка затрудняет взаимодействие:

Si + O2 = SiO2

При температуре 1200-1500 оС кремний медленно взаимодействует с углеродом в виде графита с образованием карборунда SiC – вещества с атомной кристаллической решеткой подобной алмазу и почти не уступающего ему в прочности:

Si + С = SiС

С водородом кремний не реагирует.

металлами

Ввиду своей низкой электроотрицательности кремний может проявлять окислительные свойства лишь по отношению к металлам. Из металлов кремний реагирует с активными (щелочными и щелочноземельными), а также многими металлами средней активности. В результате такого взаимодействия образуются силициды:

2Mg + Si = Mg2Si

Силициды активных металлов легко гидролизуются водой или разбавленными растворами кислот-неокислителей:

Mg2Si + 4H2O = SiH4 + 2Mg(OH)2

Mg2Si + 4HCl > 2MgCl2 + SiH4↑

При этом образуется газ силан SiH4 – аналог метана CH4.

Взаимодействие кремния со сложными веществами

С водой кремний не реагирует даже при кипячении, однако аморфный кремний взаимодействует с перегретым водяным паром при температуре около 400-500оС. При этом образуется водород и диоксид кремния:

Si + H2O(пар) = SiO2 + H2↑

Из всех кислот кремний (в аморфном состоянии) реагирует только с концентрированной плавиковой кислотой:

Si + 4HF(конц.) = H2SiF6 + 2H2↑

Кремний растворяется в концентрированных растворах щелочей. Реакция сопровождается выделением водорода:

Si + 2NaOH + H2O = Na2SiO3 + H2↑

Источник

Углерод

Углерод – неметаллический элемент IV группы периодической таблицы Д.И. Менделеева, является важнейшей частью всех органических
веществ в природе.

Углерод

Общая характеристика элементов IVa группы

От C к Pb (сверху вниз в периодической таблице) происходит увеличение: атомного радиуса, металлических, основных, восстановительных свойств.
Уменьшается электроотрицательность, энергия ионизация, сродство к электрону.

Читайте также:  Какие свойства воды связаны с ее способностью образовывать водородные связи

Из элементов IVа группы углерод и кремний относятся к неметаллам, германий, олово и свинец – металлы.

Элементы IVa группы

Электронные конфигурации у данных элементов схожи, так как они находятся в одной группе (главной подгруппе!), общая формула ns2np2:

  • C – 2s22p2
  • Si – 3s23p2
  • Ge – 4s24p2
  • Sn – 5s25p2
  • Pb – 6s26p2

Степени оксиления углерода

Природные соединения

В природе углерод встречается в виде следующих соединений:

  • Аллотропных модификаций – графит, алмаз, фуллерен
  • MgCO3 – магнезит
  • CaCO3 – кальцит (мел, мрамор)
  • CaCO3*MgCO3 – доломит

Алмаз, графит, магнезит и доломит

Получение

Углерод получают в ходе пиролиза углеводородов (пиролиз – нагревание без доступа кислорода). Также применяется получение углеродистых соединений:
древесины и каменного угля.

C2H6 → (t) C + H2 (пиролиз этана)

Разложение углеродистых соединений

Химические свойства
  • Реакции с неметаллами
  • При нагревании углерод реагирует со многими неметаллами: водородом, кислородом, фтором.

    C + H2 → (t) CH4 (метан)

    2С + O2 → (t) 2CO (угарный газ – продукт неполного окисления углерода, образуется при недостатке кислорода)

    С + O2 → (t) CO2 (углекислый газ – продукт полного окисления углерода, образуется при достаточном количестве кислорода)

    С + F2 → (t) CF4

  • Реакции с металлами
  • При нагревании углерод реагирует с металлами, проявляя свои окислительные свойства. Напомню, что металлы могут принимать только положительные
    степени окисления.

    Ca + C → CaC2 (карбид кальция, СО углерода = -1)

    Al + C → Al4C3 (карбид алюминий, СО углерода -4)

    Очевидно, что степень окисления углерода в соединении с различными металлами может отличаться.

    Карбид алюминия

  • Восстановительные свойства
  • Углерод – хороший восстановитель. С помощью него металлургическая промышленность справляется с задачей получения чистых металлов из их
    оксидов:

    Fe2O3 + C → Fe + CO2

    ZnO + C → Zn + CO

    FeO + C → Fe + CO

    Углерод восстанавливает не только металлы из их оксидов, но и неметаллы подобным образом:

    SiO2 + C → (t) Si + CO

    Может восстановить и собственный оксид:

    CO2 + C → CO

    Угарный газ

  • Реакция с водой
  • Известная реакция взаимодействия угля с водяным паром, называемая также газификацией угля, торфа, сланца – крайне важна в промышленности:

    C + H2O → CO↑ + H2↑

  • Реакции с кислотами
  • В реакциях с кислотами углерод проявляет себя как восстановитель:

    C + HNO 3(конц.) → (t) CO2 + NO2 + H2

    C + HNO3 → CO2 + NO + H2O

    C + H2SO4(конц.) → CO2 + SO2 + H2O

    Оксид азота IV

Оксид углерода II – СO

Оксид углерода II – продукт неполного окисления углерода. Несолеобразующий оксид. Это чрезвычайно опасное вещество часто образуется
при пожарах в замкнутых помещениях, при прогревании машины в гараже.

Растворяясь в крови угарный газ (имеющий в 300 раз большее сродство к гемоглобину, чем кислород) легко выигрывает конкуренцию у кислорода
и занимает его место в эритроцитах. Отравление угарным газом нередко заканчивается летальным исходом.

Получение

В промышленности угарный газ получают восстановлением оксида углерода IV или газификацией угля (t = 1000 °С).

CO2 + C → (t) CO

C + H2O → (t) CO + H2

В лаборатории угарный газ получают при разложении муравьиной кислоты в присутствии серной:

HCOOH → (H2SO4) CO + H2O

Химические свойства

Полностью окисляется до углекислого газа в реакции с кислородом, восстанавливает оксиды металлов.

CO + O2 → CO2

Fe2O3 + CO → Fe + CO2

FeO + CO → Fe + CO2

Образование карбонилов – чрезвычайно токсичных веществ.

Fe + CO → (t) Fe(CO)5

Карбонил железа

Оксид углерода IV – CO2

Продукт полного окисления углерода. Относится к кислотным оксидам, соответствует угольной кислоте H2CO3. Бесцветный газ,
без запаха.

Получение

В промышленности углекислый газ получают при разложении известняка, в ходе производства алкоголя, при спиртовом брожении глюкозы.

CaCO3 → (t) CaO + CO2↑

C6H12O6 → C2H5OH + CO2↑

В лабораторных условиях используют реакцию мела (мрамора) с соляной кислотой.

CaCO3 + HCl → CaCl2 + H2O + CO2↑

Углекислый газ образуется при горении органических веществ:

C3H8 + O2 → CO2 + H2O

Горение природного газа

Химические свойства

  • Реакция с водой
  • В результате реакции с водой образуется нестойкая угольная кислота, которая сразу же распадается на воду и углекислый газ.

    CO2 + H2O ⇄ H2CO3

  • Реакции с основными оксидами и основаниями
  • В ходе реакций с основаниями и основными оксидами углекислый газ образует соли угольной кислоты: средние – карбонаты (при избытке основания),
    кислые – гидрокарбонаты (при избытке кислотного оксида).

    2KOH + CO2 → K2CO3 + H2O (соотношение основание – кислотный оксид 2:1)

    KOH + CO2 → KHCO3 (соотношение основание – кислотный оксид 1:1)

    Na2O + CO2 → Na2CO3

  • Окислительные свойства
  • При нагревании способен окислять металлы до их оксидов.

    Zn + CO2 → (t) ZnO + CO

Оксид цинка II

Угольная кислота

Слабая двухосновная кислота, существующая только в растворах, разлагается на воду и углекислый газ.

Угольная кислота

Химические свойства

  • Качественная реакция
  • Определить наличие карбонат-иона можно с помощью кислоты: такая реакция сопровождается “закипанием” – появлением пузырьков бесцветного
    газа без запаха.

    MgCO3 + HCl → MgCl2 + CO2↑ + H2O

    Я не раз встречал описание реакций, связанных с этой кислотой, которое заслуживает нашего внимания. В задании было сказано, что
    при добавлении к раствору гидроксида кальция углекислого газа осадок появлялся, при дальнейшем пропускании углекислого газа –
    помутнение исчезало.

    Это можно легко объяснить, вспомнив про способность угольной кислоты образовывать кислые соли, которые растворимы.

    Ca(OH)2 + CO2 → CaCO3 (осадок выпадает)

    CaCO3 + H2O + CO2 → Ca(HCO3)2 (осадок растворяется)

    Осадок выпал и растворился

  • Средние и кислые соли
  • Чтобы сделать из средней соли (карбоната) – кислую соль (гидрокарбонат) нужно добавить угольную кислоту. Однако написать ее формулу
    H2CO3 – ошибка. Ее следует записать в виде воды и углекислого газа.

    Li2CO3 + CO2 + H2O → LiHCO3 (средняя соль + кислота = кислая соль)

    Чтобы вернуть среднюю соль, следует добавить к кислой соли щелочь.

    LiHCO3 + LiOH → Li2CO3 + H2O

  • Нагревание солей угольной кислоты
  • При нагревании карбонаты распадаются на соответствующий оксид металла и углекислый газ, гидрокарбонаты – на карбонат металла, углекислый газ и воду.

    MgCO3 → (t) MgO + CO2

    KHCO3 → (t) K2CO3 + CO2↑ + H2O

Читайте также:  Какими свойствами обладает звездочка

© Беллевич Юрий Сергеевич 2018-2020

Данная статья написана Беллевичем Юрием Сергеевичем и является его интеллектуальной собственностью. Копирование, распространение
(в том числе путем копирования на другие сайты и ресурсы в Интернете) или любое иное использование информации и объектов
без предварительного согласия правообладателя преследуется по закону. Для получения материалов статьи и разрешения их использования,
обратитесь, пожалуйста, к Беллевичу Юрию.

Источник

Характеристика углерода. Свойства простых веществ и соединений

атом углерода орбитали строениеУглерод (С) – типичный неметалл; в периодической системе находится в 2-м периоде IV группе, главной подгруппе. Порядковый номер 6, Ar = 12,011 а.е.м., заряд ядра +6.

Физические свойства: углерод образует множество аллотропных модификаций: алмаз – одно из самых твердых веществ, графит, уголь, сажа.

Атом углерода имеет 6 электронов: 1s22s22p2. Последние два электрона располагаются на отдельных р-орбиталях и являются неспаренными. В принципе, эта пара могла бы занимать одну орбиталь, но в таком случае сильно возрастает межэлектронное отталкивание. По этой причине один из них занимает 2рх, а другой, либо 2ру, либо 2рz-орбитали.

атом углерода основное и возбужденное сотояниеРазличие энергии s- и р-подуровней внешнего слоя невелико, поэтому атом довольно легко переходит в возбужденное состояние, при котором один из двух электронов с 2s-орбитали переходит на свободную 2р. Возникает валентное состояние, имеющее конфигурацию 1s22s12px12py12pz1. Именно такое состояние атома углерода характерно для решетки алмаза — тетраэдрическое пространственное расположение гибридных орбиталей, одинаковая длина и энергия связей.

Это явление, как известно, называют sp3-гибридизацией, а возникающие функции – sp3-гибридными.  Образование четырех sp3-cвязeй обеспечивает атому углерода более устойчивое состояние, чем три р—р- и одна s—s-связи. Помимо sp3-гибридизации у атома углерода наблюдается также sp2— и sp-гибридизация. В первом случае возникает взаимное наложение s- и двух р-орбиталей. Образуются три равнозначные sp2— гибридных орбитали, расположенные в одной плоскости под углом 120° друг к другу. Третья орбиталь р неизменна и направлена перпендикулярно плоскости sp2.

гибридизация атома углерода

При sp-гибридизации происходит наложение орбиталей s и р. Между двумя образующимися равноценными гибридными орбиталями возникает угол 180°, при этом две р-орбитали у каждого из атомов остаются неизменными.

графит алмаз аллотрорпия

Аллотрорпия углерода. Алмаз и графит

В кристалле графита атомы углерода расположены в параллельных плоскостях, занимая в них вершины правильных шестиугольников. Каждый из атомов углерода связан с тремя соседними sp2-гибридными связями. Между параллельными плоскостями связь осуществляется за счет ван-дер-ваальсовых сил. Свободные р-орбитали каждого из атомов направлены перпендикулярно плоскостям ковалентных связей. Их перекрыванием объясняется дополнительная π-связь между атомами углерода. Таким образом, от валентного состояния, в котором находятся атомы углерода в веществе, зависят свойства этого вещества.

Химические свойства углерода

Наиболее характерные степени окисления: +4, +2.

При низких температурах углерод инертен, но при нагревании его активность возрастает.

Углерод как восстановитель:

—    с кислородом
C0 + O2  –t°=  CO2 углекислый газ
при недостатке кислорода — неполное сгорание:
2C0 + O2  –t°= 2C+2O угарный газ

—     со фтором
С + 2F2 = CF4

—    с водяным паром
C0 + H2O  –1200°= С+2O + H2 водяной газ

—  с оксидами металлов. Таким образом выплавляют металл из руды.
C0 + 2CuO  –t°=  2Cu + C+4O2

—  с кислотами – окислителями:
C0 + 2H2SO4(конц.) = С+4O2­ + 2SO2­ + 2H2O
С0 + 4HNO3(конц.) = С+4O2­ + 4NO2­ + 2H2O

—  с серой образует сероуглерод:
С + 2S2 = СS2.

  Углерод как окислитель:

—    с некоторыми металлами образует карбиды

4Al + 3C0 = Al4C3

Ca + 2C0 = CaC2-4

—     с водородом — метан (а также огромное количество органических соединений)

C0 + 2H2 = CH4

— с кремнием, образует карборунд (при 2000 °C в электропечи):

Si + C = SiC.

Нахождение углерода в природе

Ссвободный углерод встречается в виде алмаза и графита. В виде соединений углерод находится в составе минералов: мела, мрамора, известняка – СаСО3, доломита – MgCO3*CaCO3; гидрокарбонатов – Mg(НCO3)2 и Са(НCO3)2, СО2 входит в состав воздуха; углерод является главной составной частью природных органических соединений – газа, нефти, каменного угля, торфа, входит в состав органических веществ, белков, жиров, углеводов, аминокислот, входящих в состав живых организмов.

углерод, химические свойства, аллотропия, СО, СО2

Неорганические соединения углерода

Ни ионы С4+ , ни С4- ‑ ни при каких обычных химических процессах не образуются: в соединениях углерода имеются ковалентные связи различной полярности.

Читайте также:  Какие специи лечебные свойства

Оксид углерода (II)  СО

Угарный газ; бесцветный, без запаха, малорастворим в воде, растворим в органических растворителях, ядовит, t°кип = -192°C; t пл. = -205°C.

Получение
1)     В промышленности (в газогенераторах):
C + O2 = CO2

CO2 + C = 2CO

2)     В лаборатории — термическим разложением муравьиной или щавелевой кислоты в присутствии H2SO4(конц.):
HCOOH = H2O + CO­

H2C2O4 = CO­ + CO2­ + H2O

Химические свойства

При обычных условиях CO инертен; при нагревании – восстановитель; несолеобразующий оксид.

1)     с кислородом

2C+2O + O2 = 2C+4O2

2)     с оксидами металлов

C+2O + CuO = Сu + C+4O2

3)     с хлором (на свету)

CO + Cl2  –hn=  COCl2(фосген)

4)     реагирует с расплавами щелочей (под давлением)

CO + NaOH = HCOONa (формиат натрия)

5)     с переходными металлами образует карбонилы

Ni + 4CO  –t°= Ni(CO)4

Fe + 5CO  –t°= Fe(CO)5

Оксид углерода (IV) СO2

Углекислый газ, бесцветный, без запаха, растворимость в воде — в 1V H2O растворяется 0,9V CO2 (при нормальных условиях); тяжелее воздуха; t°пл.= -78,5°C (твёрдый CO2 называется «сухой лёд»); не поддерживает горение.

Получение

  1. Термическим разложением солей угольной кислоты (карбонатов). Обжиг известняка:

CaCO3  –t°=  CaO + CO2

  1. Действием сильных кислот на карбонаты и гидрокарбонаты:

CaCO3 + 2HCl = CaCl2 + H2O + CO2­

NaHCO3 + HCl = NaCl + H2O + CO2­

Химические свойства СO2
Кислотный оксид: реагирует с основными оксидами и основаниями, образуя соли угольной кислоты

Na2O + CO2 = Na2CO3

2NaOH + CO2 = Na2CO3 + H2O

NaOH + CO2 = NaHCO3

При повышенной температуре может проявлять окислительные свойства

С+4O2 + 2Mg  –t°=  2Mg+2O + C0

Качественная реакция

Помутнение известковой воды:

Ca(OH)2 + CO2  = CaCO3¯(белый осадок) + H2O

Оно исчезает при длительном пропускании CO2 через известковую воду, т.к. нерастворимый карбонат кальция переходит в растворимый гидрокарбонат:

CaCO3 + H2O + CO2 = Сa(HCO3)2

Угольная кислота и её соли

H2CO3 — Кислота слабая, существует только в водном растворе:

CO2 + H2O ↔ H2CO3

Двухосновная:
H2CO3 ↔ H+ + HCO3— Кислые соли — бикарбонаты, гидрокарбонаты
HCO3— ↔ H+ + CO32-    Cредние соли — карбонаты

Характерны все свойства кислот.

Карбонаты и гидрокарбонаты могут превращаться друг в друга:

2NaHCO3  –t°=  Na2CO3 + H2O + CO2­

Na2CO3 + H2O + CO2 = 2NaHCO3

Карбонаты металлов (кроме щелочных металлов) при нагревании декарбоксилируются с образованием оксида:

CuCO3  –t°=  CuO + CO2­

Качественная реакция — «вскипание» при действии сильной кислоты:

Na2CO3 + 2HCl = 2NaCl + H2O + CO2­

CO32- + 2H+ = H2O + CO2­

Карбиды

Карбид кальция:

CaO + 3 C = CaC2 + CO

CaC2 + 2 H2O = Ca(OH)2 + C2H2 .

Ацетилен выделяется при реакции с водой карбидов цинка, кадмия, лантана и церия:

2 LaC2 + 6 H2O = 2La(OH)3 + 2 C2H2 + H2.

Be2C и Al4C3 разлагаются водой с образованием метана:

Al4C3 + 12 H2O = 4 Al(OH)3 = 3 CH4.

В технике применяют карбиды титана TiC, вольфрама W2C (твердые сплавы), кремния SiC (карборунд – в качестве абразива и материала для нагревателей).

Цианиды

получают при нагревании соды в атмосфере аммиака и угарного газа:

Na2CO3 + 2 NH3 + 3 CO = 2 NaCN + 2 H2O + H2 + 2 CO2

Синильная кислота HCN – важный продукт химической промышленности, широко применяется в органическом синтезе. Ее мировое производство достигает 200 тыс. т в год. Электронное строение цианид-аниона аналогично оксиду углерода (II), такие частицы называют изоэлектронными:

C=O: [:C=N:]–

Цианиды (0,1-0,2%-ный водный раствор) применяют при добыче золота:

2 Au + 4 KCN + H2O + 0,5 O2 = 2 K[Au(CN)2] + 2 KOH.

При кипячении растворов цианидов с серой или сплавлении твердых веществ образуются роданиды:
KCN + S = KSCN.

При нагревании цианидов малоактивных металлов получается дициан:  Hg(CN)2 = Hg + (CN)2. Растворы цианидов окисляются до цианатов:

2 KCN + O2 = 2 KOCN.

Циановая кислота существует в двух формах:

H-N=C=O; H-O-C=N:

В 1828 г. Фридрих Вёлер (1800-1882) получил из цианата аммония мочевину: NH4OCN = CO(NH2)2 при упаривании водного раствора.

Это событие обычно рассматривается как победа синтетической химии над «виталистической теорией».

Существует изомер циановой кислоты – гремучая кислота

H-O-N=C.
Ее соли (гремучая ртуть Hg(ONC)2) используются в ударных воспламенителях.

Синтез мочевины (карбамида):

CO2 + 2 NH3 = CO(NH2)2 + H2O.  При 1300С и 100 атм.

Мочевина является амидом угольной кислоты, существует и ее «азотный аналог» – гуанидин.

Карбонаты

Важнейшие неорганические соединения углерода – соли угольной кислоты (карбонаты). H2CO3 – слабая кислота (К1 =1,3·10-4; К2 =5·10-11). Карбонатный буфер поддерживает углекислотное равновесие в атмосфере. Мировой океан обладает огромной буферной емкостью, потому что он является открытой системой. Основная буферная реакция – равновесие при диссоциации угольной кислоты:

H2CO3 ↔ H+ + HCO3— .

При понижении кислотности происходит дополнительное поглощение углекислого газа из атмосферы с образованием кислоты:
CO2 + H2O ↔ H2CO3 .

При повышении кислотности происходит растворение карбонатных пород (раковины, меловые и известняковые отложения в океане); этим компенсируется убыль гидрокарбонатных ионов:

H+ + CO32-↔  HCO3—

CaCO3(тв.) ↔  Ca2+ + CO32-

Твердые карбонаты переходят в растворимые гидрокарбонаты. Именно этот процесс химического растворения избыточного углекислого газа противодействует «парниковому эффекту» – глобальному потеплению из-за поглощения углекислым газом теплового излучения Земли. Примерно треть мирового производства соды (карбонат натрия Na2CO3) используется в производстве стекла.

Источник