В какой структуре растительной клетки содержится клеточный сок

В какой структуре растительной клетки содержится клеточный сок thumbnail

Текущая версия страницы пока не проверялась опытными участниками и может значительно отличаться от версии, проверенной 6 сентября 2020; проверки требует 1 правка.

Строение растительной клетки.

Расти́тельные кле́тки — эукариотические клетки, однако несколькими своими свойствами они отличаются от клеток остальных эукариот. К их отличительным чертам относят:

  • Крупная центральная вакуоль, пространство, заполненное клеточным соком и ограниченное мембраной — тонопластом[1][2]. Вакуоль играет ключевую роль в поддержании клеточного тургора, контролирует перемещение молекул из цитозоля в выделения клетки, хранит полезные вещества и расщепляет отслужившие старые белки и органеллы.
  • Есть клеточная стенка, состоящая главным образом из целлюлозы, а также гемицеллюлозы, пектина и во многих случаях лигнина. Она образуется протопластом поверх клеточной мембраны. Она отличается от клеточной стенки грибов, состоящей из хитина, и бактерий, построенной из пептидогликана (муреина).
  • Специализированные пути связи между клетками — плазмодесмы[3], цитоплазматические мостики: цитоплазма и эндоплазматический ретикулум (ЭПР) соседних клеток сообщаются через поры в клеточных стенках[4].
  • Пластиды, из которых наиболее важны хлоропласты. Хлоропласты содержат хлорофилл, зелёный пигмент, поглощающий солнечный свет. В них осуществляется фотосинтез, в ходе которого клетка синтезирует органические вещества из неорганических. Другими пластидами являются лейкопласты: амилопласты, запасающие крахмал, элайопласты, хранящие жиры и др., а также хромопласты, специализирующиеся на синтезе и хранении пигментов. Как и митохондрии, чей геном у растений содержит 37 генов[5], пластиды имеют собственные геномы (пластомы), состоящие из около 100—120 уникальных генов[6]. Как предполагается, пластиды и митохондрии возникли как прокариотические эндосимбионты, поселившиеся в эукариотических клетках[7].
  • Деление клеток (митоз) наземных растений и некоторых водорослей, особенно харовых (Charophyta)[8] и порядка Trentepohliales характеризуется наличием дополнительной стадии — препрофазы. Помимо этого цитокинез у них осуществляется при помощи фрагмопласта — «формы» для строящейся клеточной пластинки[9].
  • Мужские половые клетки мхов и папоротниковидных имеют жгутик, схожий со жгутиком сперматозоидов животных[10][11], но у семенных растений — голосеменных и цветковых — они лишены жгутика[12] и называются спермиями.
  • Из присущих животной клетке органелл у растительной отсутствуют только центриоли[13].

Сравнение клеток растений и животных[править | править код]

ПризнакКлетки животныхКлетки растенийИсключения
Клеточная стенкаНетЕсть (целлюлоза)Нет
Тип питанияГетеротрофныеАвтотрофныеРастения-паразиты гетеротрофны
ПластидыНетЕстьПодземные побеги, растения-паразиты,
а также клетки всех тканей, кроме основной
лишены хлорофилла
ЦентриолиЕстьНетНет
Центральная вакуольНетЕстьУ растений отсутствует в мёртвых и др.
специализированных клетках
Основное запасное
питательное вещество
ГликогенКрахмалНет
Поры и плазмодесмыНетЕстьНет
Целостные реакции клетки
(пиноцитоз, эндоцитоз, экзоцитоз, фагоцитоз)
ЕстьНетНет

Основные типы растительных клеток[править | править код]

Паренхимные клетки[править | править код]

Паренхимные клетки — это клетки, размеры которых во всех направлениях одинаковы или длина немного больше ширины[14]. Паренхиму растений называют также основной тканью[15].

Клетки паренхимы образуют однородные скопления в теле растения, заполняют пространства между другими тканями, входят в состав проводящих и механических тканей. Они могут выполнять различные функции: ассимиляционную, выделительную и др. Приспособленность паренхимных клеток к различным функциям обусловлена их функциональной специализацией протопластов. Присутствие в паренхиме (особенно рыхлой) межклетников определяет её участие в газообмене. Живые паренхимные клетки способны к делению; в паренхиме закладывается феллоген, а у растений с атипичным приростом в толщину — камбий (корнеплоды свёклы, некоторые лианы)[15].

Прозенхимные клетки[править | править код]

Прозенхимные клетки — это вытянутые (длина во много раз превышает ширину) и заострённые на концах (в отличие от паренхимы) клетки, различные по происхождению и функциям. Между прозенхимой (тканью, образованной прозенхимными клетками) и паренхимой имеются переходы, например, колленхима и лопастные ветвистые клетки мезофилла в листьях канны и др. растений[16].

Деление растительных клеток[править | править код]

Фотографии линии клеток Tobacco BY-2 cell, начиная с первых этапов митоза. Растущие концы микротрубочек показаны зелёным (помечены зелёным флуоресцентным белком и белком EB1, полученным из резуховидки Таля (Arabidopsis thaliana)).

N — ядро,
V — вакуоль,
PPB — препрофазная лента,
MTN — начало скопления микротрубочек,
NEB — распад ядерной оболочки в начале прометафазы.

См. также клип, показывающий этот процесс.

У растительных клеток имеется уникальная дополнительная фаза митоза — препрофаза. Она предшествует профазе и включает два основных события:

  • Образование препрофазной ленты — кольца из микротрубочек, расположенного под плазматической мембраной[18];
  • Начало скопления микротрубочек около ядерной оболочки[19].

В остальном митоз растительных клеток проходит так же, как у остальных эукариот, только цитокинез у них протекает с использованием специальных структур — фрагмопласта (у высших растений и некоторых водорослей), фикопласта (у нек. других водорослей) и др.

Клеточная стенка[править | править код]

Клеточная стенка имеется не только у растительных клеток: она есть у грибов и бактерий, но только у растений она состоит из целлюлозы (исключением являются грибоподобные организмы оомицеты, чья клеточная стенка также состоит из целлюлозы[20]).

Структура и химический состав[править | править код]

Клеточная стенка образуется из клеточной пластинки, причём сначала формируется первичная, а затем вторичная клеточная стенка. Строение клеточной стенки двух этих типов напоминает устройство железобетонных блоков, в которых присутствует металлический каркас и связующее вещество — цемент. В клеточной стенке каркасом являются пучки молекул целлюлозы, а связующим веществом служат гемицеллюлоза и пектины, которые образуют матрикс клеточной стенки. Эти вещества транспортируются во время роста клеточной пластинки из комплекса Гольджи к плазматической мембране, где пузырьки сливаются с ней и посредством экзоцитоза выбрасывают содержимое наружу[21].

Читайте также:  В каком мясе содержится меньше холестерина

Помимо указанных веществ, в оболочке одревесневших клеток содержится лигнин, повышающий их механическую прочность и понижающий водонепроницаемость. Кроме того, в оболочке клеток некоторых специализированных тканей могут накапливаться гидрофобные вещества: растительные воска, кутин и суберин, откладывающийся на внутренней поверхности стенок клеток пробки и составляющий пояски Каспари[22].

Первичная и вторичная клеточные стенки[править | править код]

Первичная клеточная стенка содержит до 90% воды и характерна для меристематических и малодифференцированных клеток. Эти клетки способны изменять свой объём, но не за счёт растяжения целлюлозных фибрилл, а смещения относительно друг друга этих фибрилл[23].

Некоторые клетки, например, мезофилла листа, сохраняют первичную оболочку и по достижении нужных размеров перестают откладывать в неё новые вещества. Однако у большинства клеток этот процесс не прекращается, и между плазматической мембраной и первичной оболочкой у них откладывается вторичная клеточная стенка. Она имеет принципиально схожее с первичной строение, но содержит значительно больше целлюлозы и меньше воды. Во вторичной стенке обычно различают три слоя — наружный, самый мощный средний и внутренний[23].

Поры[править | править код]

Во вторичной стенке имеется большое количество пор[23]. Каждая пора представляет собой канал в том месте клеточной оболочки, в котором над первичным поровым полем не откладывается вторичная оболочка[24]. Первичное поровое поле — это небольшой участок тонких смежных стенок двух клеток, состоящий из первичной оболочки и клеточной пластинки, пронизанный плазмодесмами[25]. Поры возникают парно в смежных клетках соседних клеток и разделены замыкающей трёхслойной[25] плёнкой (поровой мембраной)[24]. Различают поры:

  • Простые поры представляют собой каналы во вторичной оболочке паренхимных клеток и склереид, имеющие одинаковую ширину на всем протяжении.
  • Окаймлённые поры — это поры, окаймление которых составляет куполообразно приподнятая над поровой мембраной вторичная оболочка. В плане такая пора имеет вид двух окружностей, наружная из которых соответствует окаймлению, а внутренняя — отверстию, открывающемуся в полость клетки. Характерны для водопроводящих элементов, представленных мёртвыми клетками.
  • Полуокаймлённые поры — пара пор, одна из которых — простая, другая — окаймлённая. Образуется в смежных стенках трахеид хвойных и паренхимных клеток древесинных лучей.
  • Слепые поры представляют собой каналы во вторичной оболочке только одной из двух соседних клеток, такие поры не функционируют.
  • Ветвистые поры — поры, разветвлённые на одном из концов вследствие слияния двух или нескольких простых пор в процессе утолщения вторичной оболочки.
  • Щелевидные поры — поры с отверстиями в виде косой щели; образуются в клетках прозенхимы, например, волокнах древесины[26].

Плазмодесмы[править | править код]

Схематическая структура плазмодесмы.
1 — клеточная стенка
2 — плазмалемма
3 — десмотубула
4 — эндоплазматический ретикулум
5 — белки плазмодесмы

Плазмодесма — это тончайший тяж цитоплазмы, канал, связывающий протопласты соседних клеток[27]. Эти каналы по всей длине выстланы плазматической мембраной. Через плазмодесмы проходит полая структура — десмотубула, через неё элементы ЭПР соседних клеток сообщаются между собой.

Через плазмодесмы осуществляется свободный транспорт веществ. Предполагают, что ситовидные поля флоэмы также представляют собой крупные плазмодесмы[28].

Внутреннее пространство растения, объединяющее все протопласты, связанные посредством плазмодесм, называют симпластом, соответственно, транспорт через плазмодесмы называют симпастическим[29].

Функции[править | править код]

Клеточные стенки растений выполняют следующие функции:

  • обеспечение возможности тургора (не будь её, внутриклеточное давление разорвало бы клетку);
  • роль наружного скелета (то есть придаёт форму клетке, определяет рамки её роста, обеспечивает механическую и структурную поддержку);
  • запасает питательные вещества[29];
  • защита от внешних патогенов.

Органеллы[править | править код]

Пластиды[править | править код]

Пластиды — органеллы растительной клетки, состоящие из белковой стромы, окружённой двумя липопротеидными мембранами. Внутренняя из них образует внутрь выросты (тилакоиды, или ламеллы)[30].

Пластиды, как и митохондрии, являются самовоспроизводящимися органеллами и имеют собственный геном — пластом, а также рибосомы.

У высших растений все пластиды происходят от общего предшественника — пропластид, которые развиваются из двумембранных инициальных частиц.

Пластиды присущи исключительно растениям[31]. Различают три основных типа пластид:

  • Лейкопласты. Эти пластиды не содержат никаких пигментов, внутренняя мембранная система, хотя и присутствует, но развита слабо. Разделяют амилопласты, запасающие крахмал, протеинопласты, содержащие белки, элайопласты (или олеопласты), запасающие жиры. Этиопласты — это бесцветные пластиды растений, которые выращивали без освещения. При наличии света они легко превращаются в хлоропласты[32].
  • Хромопласты — пластиды жёлто-оранжевого цвета, обусловленного наличием в них пигментов каротиноидов: каротина, ксантофилла, лютеина, зеаксантина и др. Образуются из хлоропластов при разрушении в них хлорофилла и внутренних мембран[33]. Кроме того, хромопласты мельче хлоропластов по размерам. Каротиноиды присутствуют в хромопластах в виде кристаллов или растворёнными в каплях жира (такие капли называют пластоглобулами). Биологическая роль хромопластов до сих пор неясна[34].
  • Хлоропласты — пластиды в виде двояковыпуклой линзы, окружённые оболочкой из двух липопротеидных мембран. Внутренняя из них образует длинные выросты в белковую строму — тилакоиды стромы и более мелкие, расположенные стопками тилакоиды гран, соединённые между собой тилакоидами стромы. С белковым слоем мембран тилакоидов связаны пигменты: хлорофилл и каротиноиды. В хлоропластах осуществляется фотосинтез. Первичный крахмал, синтезированный хлоропластами, откладывается в строме между тилакоидами[35].

Гигантские хлоропласты водорослей, присутствующие в клетке в единственном числе, называются хроматофорами. Их форма может быть очень разнообразной[31].

Вакуоли[править | править код]

Вакуоль — полость в клетке, заполненная клеточным соком и окружённая мембраной — тонопластом. Вещества, содержащиеся в клеточном соке, определяют величину осмотического давления и тургор клеточной оболочки.

Читайте также:  Какие витамины содержаться в пшеничной муке

Вакуоли образуются из провакуолей — небольших мембранных пузырьков, отшнуровывающихся от ЭПР и комплекса Гольджи. Потом пузырьки сливаются, образуя более крупные вакуоли. Только у старых вакуолей все вакуоли могут сливаться в одну гигантскую центральную вакуоль, обычно же клетка, помимо центральной вакуоли, содержит мелкие вакуоли, наполненные запасными веществами и продуктами обмена[36].

Вакуоли выполняют в клетке следующие основные функции:

  • создание тургора;
  • запасание необходимых веществ;
  • отложение веществ, вредных для клетки;
  • ферментативное расщепление органических соединений (это сближает вакуоли с лизосомами)[37].

Включения растительных клеток[править | править код]

  • трофические включения:
    • крахмальные зёрна;
    • белковые гранулы (в гиалоплазме, пластидах, ЭПР, вакуолях, ядре). Чаще всего белковые отложения обнаруживают в виде алейроновых зёрен, представляющих собой наполненные белком обезвоженные вакуоли.
    • липидные капли — мощный источник энергии. Энергетическая ценность липидов вдвое выше, чем у белков или углеводов, поэтому содержащие их ткани или семена могут иметь меньшую массу и размеры.
  • включения, не имеющие энергетической ценности, как правило, отходы жизнедеятельности. Чаще всего встречаются кристаллы оксалата кальция[38].

Примечания[править | править код]

  1. ↑ JA Raven (1997) The vacuole: a cost-benefit analysis. Advances in Botanical Research 25, 59–86
  2. ↑ RA Leigh and D Sanders (1997) Advances in Botanical Research, Vol 25: The Plant
    Vacuole. Academic Press, California and London. ISBN 0-12-441870-8
  3. ↑ Oparka, KJ (1993) Signalling via plasmodesmata-the neglected pathway. Seminars in Cell Biology 4, 131–138
  4. ↑ Hepler, PK (1982) Endoplasmic reticulum in the formation of the cell plate and plasmodesmata. Protoplasma 111, 121–133
  5. ↑ Anderson S, Bankier AT, et al. (1981) Sequence and organization of the human mitochondrial genome. Nature 290, 4–65
  6. ↑ L Cui, N Veeraraghavan, et al. (2006) ChloroplastDB: the chloroplast genome database. Nucleic Acids Research, 34, D692-696
  7. ↑ L. Margulis (1970) Origin of eukaryotic cells. Yale University Press, New Haven
  8. ↑ Lewis, LA, McCourt, RM (2004) Green algae and the origin of land plants. American Journal of Botany 91, 1535–1556
  9. ↑ López-Bautista, JM, Waters, DA and Chapman, RL (2003) Phragmoplastin, green algae and the evolution of cytokinesis. International Journal of Systematic and Evolutionary Microbiology 53, 1715–1718
  10. ↑ Manton, I. and Clarke, B. (1952) An electron microscope study of the spermatozoid of Sphagnum. Journal of Experimental Botany 3, 265–275
  11. ↑ D.J. Paolillo, Jr. (1967) On the structure of the axoneme in flagella of Polytrichum juniperinum. Transactions of the American Microscopical Society, 86, 428–433
  12. ↑ PH Raven , Evert RF, Eichhorm SE (1999) Biology of Plants, 6th edition. WH Freeman, New York
  13. ↑ Билич, Крыжановский, 2009, с. 136.
  14. ↑ Лотова, Нилова, Рудько, 2007, с. 58.
  15. 1 2 Паренхима // Большая советская энциклопедия : [в 30 т.] / гл. ред. А. М. Прохоров. — 3-е изд. — М. : Советская энциклопедия, 1969—1978.
  16. Прозенхима — статья из Биологического энциклопедического словаря
  17. Dhonukshe, P., Mathur, J., Hülskamp, M., Gadella, TWJ. Microtubule plus-ends reveal essential links between intracellular polarization and localized modulation of endocytosis during division-plane establishment in plant cells (англ.) // BMC Biology (англ.)русск. : journal. — 2005. — Vol. 3. — P. 11. — doi:10.1186/1741-7007-3-11. — PMID 15831100.
  18. Ambrose J. C., Cyr R. J. Mitotic spindle organization by the preprophase band (англ.) // Molecular Plant : journal. — 2008. — Vol. 1, no. 6. — P. 950—960. — doi:10.1093/mp/ssn054. — PMID 19825595. Архивировано 15 апреля 2013 года.
  19. Hoshino H., Yoneda A., Kumagai F., Hasezawa S. Roles of actin-depleted zone and preprophase band in determining the division site of higher-plant cells, a tobacco BY-2 cell line expressing GFP-tubulin (англ.) // Protoplasma : journal. — 2003. — Vol. 222, no. 3—4. — P. 157—165. — doi:10.1007/s00709-003-0012-8. — PMID 14714204.
  20. Гл. ред. М. С. Гиляров; Редкол.: А. А. Бабаев, Г. Г. Винберг, Г. А. Заварзин и др. Оомицеты // Биологический энциклопедический словарь.» — 2-е изд., исправл. — М.: Сов. Энциклопедия (рус.). — 1986.
  21. ↑ Билич, Крыжановский, 2009, с. 140.
  22. ↑ Билич, Крыжановский, 2009, с. 146—147.
  23. 1 2 3 Билич, Крыжановский, 2009, с. 143.
  24. 1 2 Лотова, Нилова, Рудько, 2007, с. 65.
  25. 1 2 Лотова, Нилова, Рудько, 2007, с. 59.
  26. ↑ Лотова, Нилова, Рудько, 2007, с. 65—66.
  27. ↑ Лотова, Нилова, Рудько, 2007, с. 62.
  28. ↑ Билич, Крыжановский, 2009, с. 144.
  29. 1 2 Билич, Крыжановский, 2009, с. 148.
  30. ↑ Лотова, Нилова, Рудько, 2007, с. 62—63.
  31. 1 2 Билич, Крыжановский, 2009, с. 149.
  32. ↑ Билич, Крыжановский, 2009, с. 154.
  33. ↑ Лотова, Нилова, Рудько, 2007, с. 90.
  34. ↑ Билич, Крыжановский, 2009, с. 152.
  35. ↑ Лотова, Нилова, Рудько, 2007, с. 89.
  36. ↑ Лотова, Нилова, Рудько, 2007, с. 17—18.
  37. ↑ Билич, Крыжановский, 2009, с. 157—160.
  38. ↑ Билич, Крыжановский, 2009, с. 163—167.

Литература[править | править код]

  • Билич Г.Л., Крыжановский В.А. Биология. Полный курс: В 4 т. — издание 5-е, дополненное и переработанное. — М.: Издательство Оникс, 2009. — Т. 1. — 864 с. — ISBN 978-5-488-02311-6.
  • Лотова Л. И., Нилова М.В., Рудько А.И. Словарь фитоанатомических терминов: учебное пособие. — М.: Издательство ЛКИ, 2007. — 112 с. — ISBN 978-5-382-00179-1.

Источник

Растительная клетка

Строение растительной клетки

Растительная клетка включает в своем составе такие органеллы:

  • Ядро;
  • Ядрышко;
  • Аппарат Гольджи;
  • Микротрубочки;
  • Пластиды;
  • Лизосомы;
  • Хлоропласты;
  • Лейкопласты;
  • Хромопласты;
  • Митохондрии;
  • Рибосомы;
  • Вакуоль;
  • Эндоплазматическая сеть.

Строение растительной клетки

Рис. 1 Строение растительной клетки

Чем растительная клетка отличается от животной?

Основной строительный элемент растений и других живых организмов имеет свои отличия. Главные из них заключаются в следующем:

  • В составе растительной базовой ячейки имеется вакуоль.
  • Отличается состав клеточных стенок – у растений он включает пектиновые вещества, целлюлозу, лигнин.
  • В растительных организмах функцию связующего элемента между клетками выполняет плазмодесма, или поры стенок.
  • Только в составе растений имеются пластиды, а вот центриоли отсутствуют.
Читайте также:  Какие металлы содержатся в нефти

Функции органоидов растительной клетки

Наглядно сравнить разные функции и устройство строительных ячеек растений поможет таблица 1.

Функции органоидов растительной клетки

Таблица 1 Функции органоидов растительной клетки

Органеллы клетки

Более понятно будет строение клетки и сложность этого базового компонента, если детально разобраться во всех элементах ее структуры.

Ядро

Ядро – это самая значительная часть зеленых организмов. Именно на него возлагается вся ответственность за любые процессы, происходящие внутри ячейки. Уникальная роль этой органеллы в том, что посредством нее передается наследственная информация.

Важно! Есть также и другой способ генетической наследственности – цитоплазматический, но он отличается меньшими объемами “хранения памяти”.

Привычно одна ячейка имеет только одно ядро, хотя были зафиксированы и клетки, в которых насчитывалось несколько ядер. Диаметр этого компонента варьируется в пределах 5-20 мкм. По форме центральный элемент может быть сферическим, дисковидным, удлиненным. Внешняя поверхность вскрыта ядерной оболочкой, которая отграничивает эту органеллу от других. Ее химический состав включает полисахариды, целлюлозу, пектин, лигнин и белки. Нет стабильности и в отношении расположения ядра внутри. В молодой клетке эта органелла находится ближе к центру. По мере взросления смещается к стенкам, и ядро замещается вакуолью. Химическая основа ядра – комбинация белков и нуклеиновых кислот. Обмен веществ осуществляется посредством тонопласта – тонкой пленочной мембраны. Остальное внутреннее пространство клетки вокруг ядра заполнено цитоплазмой – бесцветным веществом высокой степени вязкости. В ней же содержатся и остальные органоиды.

Ядрышко

Ядрышко, по сути, является ничем иным, как производным органоидом от хромосомы. Главная функция этого компонента – организация единиц рибосом.

Важно! Если на растение попадает чрезмерно большое количество солнечного света или ультрафиолета из другого источника, то под его воздействием ядрышко разрушается. Вместе с этим ядро утрачивает возможность деления.

Аппарат Гольджи

Комплекс Гольджи участвует в процессе накопления и выведения ненужных веществ. Форма его может быть различной – палочковой, дисковой или в виде зернышка.

В какой структуре растительной клетки содержится клеточный сок

Рис. 2 Лизосомы

Лизосомы

Лизосомы – это органоиды, которые не являются самостоятельными компонентами клеток. Они продуцируются в процессе функционирования комплекса Гольджи и эндоплазматической сети. Под микроскопом можно их легко узнать, так как это – пузырьки, различия между которыми заключаются только в размерах. Внутри пузырьков могут присутствовать различные компоненты – липазы, нуклеазы, протеазы. Главная функция этих клеточных включений – расщепление и преобразование поступивших в ячейку питательных элементов и их выведение. Таким образом, можно отметить сходство характеристики с основным назначением самостоятельной органеллы – комплекса Гольджи.

Микротрубочки

Микротрубочки – это белковые образования фибриллярной структуры прямолинейной формы, диаметром около 24 нм и с толщиной стенок не более 5 нм. По своему назначению они имеют сходство с мембраной, но размеры их меньше, и они могут формировать довольно сложные образования, к примеру, веретено деления ячейки для репродуктивной деятельности. Присутствуют микротрубочки в составе более сложных органоидов – центриолей и базальных телец, а также из них складывается структура ресничек и жгутиков.

Вакуоль

Вакуоль – это внутренняя полость клетки, наполненная соком. Ее размеры увеличиваются по мере развития растения, и, соответственно, роста клетки. Основу химического состава вакуоли представляют минеральные соли и органические вещества, сахара, белки, ферменты и пигменты.

Пластиды

Пластиды – это мелкие элементы клетки. Различают бесцветные пластиды и те, что имеют в своем химическом составе различные пигменты. Самые узнаваемые – зеленые, которые принимают непосредственное участие в процессе фотосинтеза.

Хлоропласты

Эти компоненты клетки имеют очень высокую чувствительность к свету за счет пигментов хлорофиллов. Как раз на них и приходится реакция фотосинтеза.

Лейкопласты

В лейкопластах происходит накопление питательных компонентов – жиров, крахмала, белков, что обеспечивает возможность жизнедеятельности клетки, ее развития, деления.

Хромопласты

В составе хромопластов присутствуют металлические соли и пигменты. Благодаря именно этим органеллам листва растений, их соцветия и плоды имеют ту или иную окраску.

Строение митохондрии

Рис. 3 Строение митохондрии

Митохондрии

Благодаря митохондриям клетки, а соответственно и растения, способны дышать и развиваться. Эти органоиды также принимают активное участие в обмене веществ и образовании АТФ.

Рибосомы

В рибосомах, которые присутствуют в ядре, цитоплазме, пластидах и митохондриях, происходит синтез белка.

Эндоплазматическая сеть (ЭПС)

Впервые этот органоид был обнаружен в 1945 г., когда К. Портер проводил свои исследования клеток с помощью электронного микроскопа. Это – полноценная система полостей и канальцев с хорошо развитым разветвлением. За счет наличия такого комплекса во много раз увеличивается полезная внутренняя поверхность клетки, что обеспечивает стабильному протеканию всех процессов, необходимых для жизни растения. Также к основному назначению ЭПС относят такие функции:

  • синтезирование белковых соединений;
  • транспортировка белков;
  • синтез полисахаридов и жиров.

Несмотря на свои мелкие размеры, растительная клетка представляет собой довольно сложный организм. И именно она и является базовой основой всех биологических организмов, обеспечивая их рост за счет своего деления.
Для более подробной информации смотрите видео:

Источник