В какой треугольник можно вписать окружность свойства

Серединный перпендикуляр к отрезку

      Определение 1. Серединным перпендикуляром к отрезку называют, прямую, перпендикулярную к этому отрезку и проходящую через его середину (рис. 1).

Рис.1

      Теорема 1. Каждая точка серединного перпендикуляра к отрезку находится на одном и том же расстоянии от концов этого отрезка.

      Доказательство. Рассмотрим произвольную точку   D,   лежащую на серединном перпендикуляре к отрезку   AB   (рис.2), и докажем, что треугольники   ADC   и   BDC   равны.

Рис.2

      Действительно, эти треугольники являются прямоугольными треугольниками, у которых катеты   AC   и   BC   равны, а катет   DC   является общим. Из равенства треугольников   ADC   и   BDC   вытекает равенство отрезков   AD   и   DB.   Теорема 1 доказана.

      Теорема 2 (Обратная  к теореме 1). Если точка находится на одном и том же расстоянии от концов отрезка, то она лежит на серединном перпендикуляре к этому отрезку.

      Доказательство. Докажем теорему 2 методом «от противного». С этой целью предположим, что некоторая точка   E   находится на одном и том же расстоянии от концов отрезка, но не лежит на серединном перпендикуляре к этому отрезку. Приведём это предположение к противоречию. Рассмотрим сначала случай, когда точки   E   и   A   лежат по разные стороны от серединного перпендикуляра (рис.3). В этом случае отрезок   EA   пересекает серединный перпендикуляр в некоторой точке, которую мы обозначим буквой   D.

Рис.3

      Докажем, что отрезок   AE   длиннее отрезка   EB.   Действительно,

      Таким образом, в случае, когда точки   E   и   A   лежат по разные стороны от серединного перпендикуляра, мы получили противоречие.

Серединный перпендикуляр свойства

Рис.4

      Теперь рассмотрим случай, когда точки   E   и   A   лежат по одну сторону от серединного перпендикуляра (рис.4). Докажем, что отрезок   EB   длиннее отрезка   AE.   Действительно,

      Полученное противоречие и завершает доказательство теоремы 2

Окружность, описанная около треугольника

      Определение 2. Окружностью, описанной около треугольника, называют окружность, проходящую через все три вершины треугольника (рис.5). В этом случае треугольник называют треугольником, вписанным в окружность, или вписанным треугольником.

Описанная около треугольника окружность треугольник вписанный в окружность

Рис.5

Свойства описанной около треугольника окружности. Теорема синусов

ФигураРисунокСвойство
Серединные перпендикуляры
к сторонам треугольника
Серединный перпендикуляр свойства Все серединные перпендикуляры, проведённые к сторонам произвольного треугольника, пересекаются в одной точке.
Посмотреть доказательство
Окружность, описанная около треугольникаОписанная около треугольника окружность треугольник вписанный в окружность Около любого треугольника можно описать окружность. Центром описанной около треугольника окружности является точка, в которой пересекаются все серединные перпендикуляры, проведённые к сторонам треугольника.
Посмотреть доказательство
Центр описанной около остроугольного треугольника окружностиЦентр описанной около остроугольного треугольника окружности лежит внутри треугольника.
Центр описанной около прямоугольного треугольника окружностиОписанная около прямоугольного треугольника окружностьЦентром описанной около прямоугольного треугольника окружности является середина гипотенузы.
Посмотреть доказательство
Центр описанной около тупоугольного треугольника окружностиОписанная около треугольника окружность центр радиус свойстваЦентр описанной около тупоугольного треугольника окружности лежит вне треугольника.
Теорема синусовТеорема синусов

Для любого треугольника справедливы равенства (теорема синусов):

,

где   a , b , c   – стороны треугольника,   A , B , С   – углы треугольника,   R   – радиус описанной окружности.

Посмотреть доказательство

Площадь треугольникаФормула площади треугольника через радиус описанной окружности

Для любого треугольника справедливо равенство:

S = 2R2 sin A sin B sin C ,

где   A , B , С   – углы треугольника,   S   – площадь треугольника,   R   – радиус описанной окружности.

Посмотреть доказательство

Радиус описанной окружностиФормула для радиуса описанной окружности

Для любого треугольника справедливо равенство:

где   a , b , c   – стороны треугольника,   S   – площадь треугольника,   R   – радиус описанной окружности.

Посмотреть доказательство

Серединные перпендикуляры к сторонам треугольника
Серединный перпендикуляр свойства

Все серединные перпендикуляры, проведённые к сторонам произвольного треугольника, пересекаются в одной точке.

Посмотреть доказательство

Окружность, описанная около треугольника
Описанная около треугольника окружность треугольник вписанный в окружность

Около любого треугольника можно описать окружность. Центром описанной около треугольника окружности является точка, в которой пересекаются все серединные перпендикуляры, проведённые к сторонам треугольника.

Посмотреть доказательство

Центр описанной около остроугольного треугольника окружности
Описанная около треугольника окружность треугольник вписанный в окружность

Центр описанной около остроугольного треугольника окружности лежит внутри треугольника.

Центр описанной около прямоугольного треугольника окружности
Описанная около прямоугольного треугольника окружность

Центром описанной около прямоугольного треугольника окружности является середина гипотенузы.

Посмотреть доказательство

Центр описанной около тупоугольного треугольника окружности
Описанная около треугольника окружность центр радиус свойства

Центр описанной около тупоугольного треугольника окружности лежит вне треугольника.

Теорема синусов
Теорема синусов

Для любого треугольника справедливы равенства (теорема синусов):

,

где   a , b , c   – стороны треугольника,   A , B , С   – углы треугольника,   R   – радиус описанной окружности.

Посмотреть доказательство

Площадь треугольника
Формула площади треугольника через радиус описанной окружности

Для любого треугольника справедливо равенство:

S = 2R2 sin A sin B sin C ,

где   A , B , С   – углы треугольника,   S   – площадь треугольника,   R   – радиус описанной окружности.

Посмотреть доказательство

Радиус описанной окружности
Формула для радиуса описанной окружности

Для любого треугольника справедливо равенство:

где   a , b , c   – стороны треугольника,   S   – площадь треугольника,   R   – радиус описанной окружности.

Посмотреть доказательство

Доказательства теорем о свойствах описанной около треугольника окружности

      Теорема 3. Все серединные перпендикуляры, проведённые к сторонам произвольного треугольника, пересекаются в одной точке.

Читайте также:  К каким свойствам относится свариваемость

      Доказательство. Рассмотрим два серединных перпендикуляра, проведённых к сторонам   AC   и   AB   треугольника   ABC,   и обозначим точку их пересечения буквой   O   (рис. 6).

Описанная около треугольника окружность серединный перпендикуляр свойства доказательства

Рис.6

      Поскольку точка   O   лежит на серединном перпендикуляре к отрезку   AC,   то в силу теоремы 1 справедливо равенство:

CO = AO .

      Поскольку точка O лежит на серединном перпендикуляре к отрезку   AB,   то в силу теоремы 1 справедливо равенство:

AO = BO .

      Следовательно, справедливо равенство:

CO = BO ,

откуда с помощью теоремы 2 заключаем, что точка O лежит на серединном перпендикуляре к отрезку   BC. Таким образом, все три серединных перпендикуляра проходят через одну и ту же точку, что и требовалось доказать.

      Следствие. Около любого треугольника можно описать окружность. Центром описанной около треугольника окружности является точка, в которой пересекаются все серединные перпендикуляры, проведённые к сторонам треугольника.

      Доказательство. Рассмотрим точку   O,   в которой пересекаются все серединные перпендикуляры, проведённые к сторонам треугольника   ABC   (рис. 6).

      При доказательстве теоремы 3 было получено равенство:

AO = OB = OC ,

из которого вытекает, что окружность с центром в точке   O   и радиусами   OA,   OB,   OC   проходит через все три вершины треугольника   ABC,   что и требовалось доказать.

      Теорема 4 (теорема синусов). Для любого треугольника (рис. 7)

Теорема синусов

Рис.7

справедливы равенства:

.

      Доказательство. Докажем сначала, что длина хорды окружности радиуса   R хорды окружности радиуса   R,   на которую опирается вписанный угол величины   φ ,   вычисляется по формуле:

      Рассмотрим сначала случай, когда одна из сторон вписанного угла является диаметром окружности (рис.8).

Описанная около треугольника окружность серединный перпендикуляр свойства доказательства

Рис.8

      Угол   MPN,   как угол,опирающийся на диаметр, является прямым угломугол,опирающийся на диаметр, является прямым углом, и равенство (1) вытекает из определения синуса угла прямоугольного треугольника.

      Поскольку все вписанные углы, опирающиеся на одну и ту же дугу, равны, то для произвольного вписанного угла всегда найдется равный ему вписанный угол, у которого одна из сторон является диаметром окружности.

      Формула (1) доказана.

      Из формулы (1) для вписанного треугольника   ABC   получаем (рис.7):

      Теорема синусов доказана.

      На сайте можно также ознакомиться с нашими учебными материалами для подготовки к ЕГЭ и ОГЭ по математике.

Источник

В этой статье Вы сможете найти свойства вписанной в треугольник окружности, а также их доказательства.

Вписанная в треугольник окружность – это такая окружность, которая находится внутри треугольника и при этом касается всех его сторон (то есть все стороны треугольника являются касательными к окружности). Стоит отметить, что в этом случае сам треугольник является описанным вокруг данной окружности.

Рисунок 1

Свойства вписанной в треугольник окружности

  1. Центр вписанной в треугольник окружности (на рис. 1 – точка О) лежит на пересечении биссектрис треугольника (на рис.1 – АО, ВО и СО).
  2. В любой треугольник вписывается окружность и притом только одна.
  3. Радиус вписанной в треугольник окружности равен:

    Где S – это площадь треугольника,

    p – полупериметр треугольника,

    a, b, c – стороны треугольника.

Доказательства свойств

Первое свойство

Доказать, что центр вписанной в треугольник окружности находится на пересечении биссектрис.

Доказательство.

  1. Опустим из центра окружности перпендикуляры (OL, OK и OM) к каждой из сторон треугольника ABC (рис. 2). Также из каждого угла проведем прямую к центру окружности (OA, OC и OB).

    Рисунок 2

  2. Рассмотрим 2 треугольника AOM и AOK. Они являются прямоугольными, т.к. OM и OK – перпендикуляры к сторонам AC и AB. Гипотенуза OA является общей для обоих треугольников.
  3. Поскольку касательная к окружности перпендикулярна радиусу, проведенному в точку касания (свойство касательной к окружности), то катеты OМ и OК являются радиусами окружности и, следовательно, равны.
  4. Из вышесказанного следует, что прямоугольные треугольники AOМ и AOК равны по гипотенузе и катету. Т.к. треугольники равны, то углы OAМ и OAК тоже равны, отсюда следует, что OA – биссектриса угла BAC.
  5. Аналогичным образом доказывается, что OC – биссектриса угла ACB, а OB – биссектриса угла ABC.
  6. То есть биссектрисы треугольника пересекаются в одной точке и этой точкой является центр вписанной окружности.

Что и требовалось доказать.

Второе свойство

Доказать, что в любой треугольник можно вписать окружность и притом только одну.

Доказательство

  1. В треугольник можно вписать окружность только в том случае, если найдется точка равноудаленная от его сторон.
  2. Проведем 2 биссектрисы OA и OC. Опустим из точки их пресечения перпендикуляры (OK, OL и OM) ко всем трем сторонам треугольника ABC (рис. 3).

    Рисунок 3

  3. Рассмотрим треугольники AOK и AOM.
  4. У них общая гипотенуза AO. Углы OAK и OAM равны (т.к. OA – биссектриса угла KAM). Углы OKA и OMA прямые (т.е. тоже равны), т.к. OK и OM – перпендикуляры к сторонам AB и AC соответственно.
  5. Поскольку 2 пары углов равны, то и 3-я пара (AOM и AOK) также является равной.
  6. Из вышенаписанного следует, что треугольники AOK и AOM равны по стороне (AO) и 2-м прилежащим к ней углам (рис. 4).

    Рисунок 4

  7. Отсюда следует, что стороны OM и OK равны, т.е. равноудалены от сторон треугольника AC и AB соответственно.
  8. Аналогичным образом доказывается, что OM и OL равны, т.е. они равноудалены от сторон треугольника AC и BC соответственно.
  9. Из вышенаписанного следует, что точка O равноудалена от сторон треугольника, т.е. является центром вписанной окружности.
  10. Аналогичным образом можно найти точку внутри любого треугольника, которая будет равноудалена от его сторон, то есть будет центром вписанной в этот треугольник окружности.
  11. Из вышенаписанного следует, что в любой треугольник можно вписать окружность.
  12. Следует отметить, что центр данной окружности лежит на пересечении биссектрис треугольника.
  13. Допустим, что в треугольник можно вписать две (или более) окружности.
  14. Проведя 3 отрезка из вершин треугольника к центру этой окружности и, опустив перпендикуляры из этого центра к каждой из сторон треугольника, мы сможем доказать, что эта окружность лежит на пересечении биссектрис треугольника (см. доказательство первого свойства).
  15. То есть центр этой окружности совпадает с центром первой окружности, уже вписанной в треугольник, а ее радиус равен перпендикуляру, опущенному на сторону треугольника (как и в первом случае). Это говорит о том, что данные окружности совпадают.
  16. Аналогичным образом можно доказать, что любая новая вписанная окружность совпадает с первой, которую мы впишем.
  17. То есть вписать в треугольник можно только одну окружность.

Что и требовалось доказать.

Третье свойство

Доказать, что радиус вписанной окружности r равен отношению площади треугольника S к полупериметру p.

А также равенство:

Доказательство.

Рисунок 5

  1. Рассмотрим произвольный треугольник ABC со сторонами a, b и c (рис 5). Полупериметр данного треугольника p рассчитывается по формуле:

  2. Центр нашей окружности (точка O на рис. 5) находиться на пересечении биссектрис треугольника. Отрезки OA, OB и OC, соединяющие O с вершинами треугольника АВС, делят треугольник на три: AOC, COB, BOA. Площадь треугольника ABC можно найти как сумму площадей этих трех треугольников.

  3. Поскольку площадь любого треугольника равна половине произведения его основания на высоту, а высота треугольников AOC, COB, BOA равна радиусу окружности r, то площади треугольников AOC, COB и BOA можно найти как:

  4. Выразим площадь S треугольника ABC через сумму площадей этих трех треугольников:

  5. Заметив, что второй множитель – это полупериметр треугольника ABC, можно представить наше равенство в виде:

    Или

  6. Итак, мы доказали, что радиус вписанной окружности равен отношению площади треугольника к полупериметру.
  7. Вспомним формулу Герона, которая в нашем случае будет иметь вид:

  8. Теперь радиус можно выразить как:

Что и требовалось доказать.

Источник

Окружность вписана в n-угольник, если она касается всех сторон этого n-угольника (рис. 8.106). 

Окружность описана около n-угольника, если все вершины n-угольника лежат на окружности (рис. 8.107). 

В какой треугольник можно вписать окружность свойства

Свойства вписанной окружности

1. Окружность можно вписать в любой треугольник.

2. Окружность можно вписать в четырехугольник, если суммы длин его противолежащих сторон равны. 

Например, на рисунке 8.106 . 

Так, окружность можно вписать в квадрат и в ромб, но нельзя вписать в параллелограмм и в прямоугольник.

Свойства описанной окружности

1. Окружность можно описать около любого треугольника.

2. Окружность можно описать около четырехугольника, если суммы его противолежащих углов равны. 

Например, на рисунке 8.107 . 

Так, окружность можно описать около квадрата и прямоугольника, но нельзя описать около параллелограмма и ромба.

Расположение центров окружностей, описанных около треугольника:

1) центр окружности расположен на пересечении серединных перпендикуляров к сторонам треугольника;

2) если треугольник остроугольный, то центр окружности расположен в этом треугольнике: 

а) в равностороннем треугольнике центром окружности является точка пересечения высот, биссектрис, медиан треугольника (центры вписанной и описанной окружностей совпадают (рис. 8.108); 

б) в равнобедренном треугольнике центр окружности расположен на биссектрисе, проведенной из вершины треугольника к его основанию (рис. 8.109);

3) если треугольник прямоугольный, то центр окружности расположен на середине гипотенузы (рис. 8.110);

4) если треугольник тупоугольный, то центр окружности расположен вне треугольника (рис. 8.111).

В какой треугольник можно вписать окружность свойства

Расположение центров окружностей, вписанных в треугольник:

1) центр окружности, вписанной в треугольник, расположен в этом треугольнике (рис. 8.112 – 8.115);

2) центром окружности является точка пересечения биссектрис треугольника;

3) в равностороннем треугольнике центром окружности является точка пересечения высот, биссектрис, медиан треугольника. 

В какой треугольник можно вписать окружность свойства

Формулы для вычисления радиусов вписанной и описанной окружностей

Радиус окружности, описанной около многоугольника, как правило, обозначают , а радиус окружности, вписанной в многоугольник, обозначают : 

1) для равностороннего треугольника со стороной :

, (8.34)

; (8.35)

2) для произвольного треугольника со сторонами  и площадью : 

, (8.36)

; (8.37)

3) для прямоугольного треугольника с катетами  и гипотенузой : 

, (8.38)

; (8.39)

4) для квадрата со стороной  и диагональю : 

, (8.40)

; (8.41)

5) для прямоугольника с диагональю : 

; (8.42)

6) для ромба с высотой : 

; (8.43)

7) для трапеции с высотой , при условии, что в трапецию можно вписать окружность: 

. (8.44)

Если около трапеции можно описать окружность, то, проведя диагональ трапеции и рассмотрев один из полученных треугольников со сторонами  и площадью , по формуле  найдем радиус окружности описанной около треугольника, а значит и около трапеции (рис. 8.116);

8) для правильного шестиугольника со стороной : 

, (8.45)

. (8.46)

Правильный шестиугольник состоит из шести правильных треугольников (рис. 8.117) и точка  является центром вписанной в него и описанной около него окружностей. 

В какой треугольник можно вписать окружность свойства

Пример 1. Найдите сторону квадрата, если известно, что разность между площадью квадрата и площадью вписанного в него круга равна .

Решение. Так как площадь круга радиуса  находят по формуле 8.32, а площадь квадрата со стороной  находят по формуле , то согласно условию задачи запишем: , .

А так как , то , , , , .

Ответ: .

Пример 2. Площадь прямоугольника равна 4, а разность длин его смежных сторон рана 3. Найдите радиус окружности, описанной около этого прямоугольника. 

Решение. Площадь прямоугольника со смежными сторонами  и  находят по формуле .

Пусть , тогда  (рис. 8.118).

Получим: , , откуда , следовательно, , .

По теореме Пифагора найдем диагональ прямоугольника: , . Согласно формуле 8.42 .

Ответ: .

Пример 3. Найдите радиус окружности, вписанной в ромб, если его диагонали равны 6 и 8. 

В какой треугольник можно вписать окружность свойства

Решение. По теореме Пифагора найдем сторону ромба (рис. 8.119):

, , .

По формуле  найдем площадь ромба: .

Но площадь ромба можно найти и по формуле , а так как , то . Тогда , а .

Ответ: 2,4.

Пример 4. Найдите длину окружности, вписанной в правильный треугольник, если его площадь равна .

Решение. Площадь правильного треугольника со стороной  находят по формуле: .

Зная площадь треугольника, найдем его сторону: , , . 

По формуле 8.35 найдем радиус окружности, вписанной в этот треугольник: .

По формуле 8.30 найдем длину окружности: .

Ответ: .

Пример 5. Радиус окружности, описанной около равнобедренного прямоугольного треугольника равен 2. Найдите радиус окружности, вписанной в этот треугольник. 

Решение. Радиус окружности, описанной около прямоугольного треугольника с гипотенузой  находят по формуле 8.38. Тогда . 

Так как треугольник равнобедренный, то его катеты  и  раны и по теореме Пифагора , откуда , . 

Радиус окружности, вписанной в прямоугольный треугольник, находят по формуле 8.39. В нашем случае , .

Ответ: .

Пример 6. Один из катетов прямоугольного треугольника равен 8, а радиус окружности, вписанной в треугольник равен 3. Найдите площадь треугольника.

В какой треугольник можно вписать окружность свойства

Решение. Рассмотрим прямоугольный треугольник . Точка  является центром вписанной в треугольник окружности (рис. 8.120).

Так как радиусы вписанной в треугольник окружности перпендикулярны сторонам треугольника в точках касания, то имеем квадрат  со стороной 3. Если катет , а сторона квадрата , то .

Пусть отрезок . По свойству касательных  и .

Тогда по теореме Пифагора  или , откуда , .

Найдем катет : .

Найдем площадь треугольника: , .

Ответ: 60.

Пример 7. Окружность, центр которой расположен на большей стороне треугольника, делит эту сторону на отрезки 4 и 8 и касается двух других его сторон, длина одной из которых равна 6. Найдите радиус окружности, вписанной в этот треугольник (рис.8.121).

В какой треугольник можно вписать окружность свойства

Решение. Согласно свойству биссектрисы треугольника запишем: , откуда . 

Радиус окружности, вписанной в треугольник, найдем по формуле 8.37.

В свою очередь по формуле Герона  найдем площадь треугольника. Так как , то .

Тогда .

Ответ:  .

Пример 8. В прямоугольную трапецию вписана окружность радиуса 3, которая в точке касания делит ее боковую сторону на отрезки 4 и 5. Найдите площадь трапеции. 

Решение. Согласно условию задачи и рисунку 8.122, запишем: , .

По свойству четырехугольника, описанного около окружности, получим: , , .

Согласно формуле  найдем площадь трапеции: .

Ответ: 45.

Пример 9. Длины оснований равнобедренной трапеции относятся как , а длина ее высоты равна 17. Вычислите площадь круга, описанного около трапеции, если известно, что средняя линия трапеции равна ее высоте.

В какой треугольник можно вписать окружность свойства

Решение. Рассмотрим равнобедренную трапецию  (рис. 8.123) и проведем диагональ трапеции .

Радиус окружности, описанной около треугольника , найдем по формуле 8.36:

, .

Зная, что  и вводя коэффициент пропорциональности , получим , .

Так как длина средней линии трапеции равна высоте трапеции, то , откуда . Тогда , .

Поскольку четырехугольник  является прямоугольником, то , тогда .

Согласно теореме Пифагора запишем:

, ;

, .

По формуле 8.36 найдем радиус окружности, описанной около треугольника , а, следовательно, и около трапеции :

.

Согласно формуле 8.32 найдем площадь круга: .

Ответ: .

Пример 10. В правильный шестиугольник вписана окружность и около него описана окружность. Найдите площадь образовавшегося кольца, если сторона шестиугольника равна .

Решение. По формуле 8.45 найдем радиус окружности, описанной около правильного шестиугольника: . 

По формуле 8.46 найдем радиус окружности, вписанной в этот шестиугольник. Так как , то . 

Площадь круга находят по формуле 8.32. Тогда , а .

Найдем площадь кольца: , .

Ответ: .

1. В любой треугольник можно вписать окружность и около любого треугольника можно описать окружность.

2. Не во всякий четырехугольник можно вписать окружность. Например, окружность можно вписать в ромб и квадрат, но нельзя вписать в параллелограмм и прямоугольник.

3. Не около всякого четырехугольника можно описать окружность. Например, окружность можно описать около квадрата и прямоугольника, но нельзя описать около параллелограмма и ромба.

4. Не во всякую трапецию можно писать окружность и не около всякой трапеции можно описать окружность. Описать окружность можно только около равнобедренной трапеции. 

5. Если многоугольник правильный (все его стороны и все его углы равны между собой), то в него всегда можно вписать окружность и около него всегда можно описать окружность. Причем, центры этих окружностей совпадают.

Длину окружности радиуса  находят по формуле: 

. (8.30)

Площадь круга радиуса  находят по формуле: 

. (8.32)

Источник

Читайте также:  Какие из перечисленных свойств площадей является основными