В какой треугольник можно вписать окружность свойства
Серединный перпендикуляр к отрезку
Определение 1. Серединным перпендикуляром к отрезку называют, прямую, перпендикулярную к этому отрезку и проходящую через его середину (рис. 1).
Рис.1
Теорема 1. Каждая точка серединного перпендикуляра к отрезку находится на одном и том же расстоянии от концов этого отрезка.
Доказательство. Рассмотрим произвольную точку D, лежащую на серединном перпендикуляре к отрезку AB (рис.2), и докажем, что треугольники ADC и BDC равны.
Рис.2
Действительно, эти треугольники являются прямоугольными треугольниками, у которых катеты AC и BC равны, а катет DC является общим. Из равенства треугольников ADC и BDC вытекает равенство отрезков AD и DB. Теорема 1 доказана.
Теорема 2 (Обратная к теореме 1). Если точка находится на одном и том же расстоянии от концов отрезка, то она лежит на серединном перпендикуляре к этому отрезку.
Доказательство. Докажем теорему 2 методом «от противного». С этой целью предположим, что некоторая точка E находится на одном и том же расстоянии от концов отрезка, но не лежит на серединном перпендикуляре к этому отрезку. Приведём это предположение к противоречию. Рассмотрим сначала случай, когда точки E и A лежат по разные стороны от серединного перпендикуляра (рис.3). В этом случае отрезок EA пересекает серединный перпендикуляр в некоторой точке, которую мы обозначим буквой D.
Рис.3
Докажем, что отрезок AE длиннее отрезка EB. Действительно,
Таким образом, в случае, когда точки E и A лежат по разные стороны от серединного перпендикуляра, мы получили противоречие.
Рис.4
Теперь рассмотрим случай, когда точки E и A лежат по одну сторону от серединного перпендикуляра (рис.4). Докажем, что отрезок EB длиннее отрезка AE. Действительно,
Полученное противоречие и завершает доказательство теоремы 2
Окружность, описанная около треугольника
Определение 2. Окружностью, описанной около треугольника, называют окружность, проходящую через все три вершины треугольника (рис.5). В этом случае треугольник называют треугольником, вписанным в окружность, или вписанным треугольником.
Рис.5
Свойства описанной около треугольника окружности. Теорема синусов
Фигура | Рисунок | Свойство |
Серединные перпендикуляры к сторонам треугольника | ![]() | Все серединные перпендикуляры, проведённые к сторонам произвольного треугольника, пересекаются в одной точке. Посмотреть доказательство |
Окружность, описанная около треугольника | ![]() | Около любого треугольника можно описать окружность. Центром описанной около треугольника окружности является точка, в которой пересекаются все серединные перпендикуляры, проведённые к сторонам треугольника. Посмотреть доказательство |
Центр описанной около остроугольного треугольника окружности | Центр описанной около остроугольного треугольника окружности лежит внутри треугольника. | |
Центр описанной около прямоугольного треугольника окружности | ![]() | Центром описанной около прямоугольного треугольника окружности является середина гипотенузы. Посмотреть доказательство |
Центр описанной около тупоугольного треугольника окружности | ![]() | Центр описанной около тупоугольного треугольника окружности лежит вне треугольника. |
Теорема синусов | ![]() | Для любого треугольника справедливы равенства (теорема синусов): , где a , b , c – стороны треугольника, A , B , С – углы треугольника, R – радиус описанной окружности. Посмотреть доказательство |
Площадь треугольника | ![]() | Для любого треугольника справедливо равенство: S = 2R2 sin A sin B sin C , где A , B , С – углы треугольника, S – площадь треугольника, R – радиус описанной окружности. Посмотреть доказательство |
Радиус описанной окружности | ![]() | Для любого треугольника справедливо равенство: где a , b , c – стороны треугольника, S – площадь треугольника, R – радиус описанной окружности. Посмотреть доказательство |
Серединные перпендикуляры к сторонам треугольника |
![]() Все серединные перпендикуляры, проведённые к сторонам произвольного треугольника, пересекаются в одной точке. Посмотреть доказательство |
Окружность, описанная около треугольника |
![]() Около любого треугольника можно описать окружность. Центром описанной около треугольника окружности является точка, в которой пересекаются все серединные перпендикуляры, проведённые к сторонам треугольника. Посмотреть доказательство |
Центр описанной около остроугольного треугольника окружности |
![]() Центр описанной около остроугольного треугольника окружности лежит внутри треугольника. |
Центр описанной около прямоугольного треугольника окружности |
![]() Центром описанной около прямоугольного треугольника окружности является середина гипотенузы. Посмотреть доказательство |
Центр описанной около тупоугольного треугольника окружности |
![]() Центр описанной около тупоугольного треугольника окружности лежит вне треугольника. |
Теорема синусов |
![]() Для любого треугольника справедливы равенства (теорема синусов): , где a , b , c – стороны треугольника, A , B , С – углы треугольника, R – радиус описанной окружности. Посмотреть доказательство |
Площадь треугольника |
![]() Для любого треугольника справедливо равенство: S = 2R2 sin A sin B sin C , где A , B , С – углы треугольника, S – площадь треугольника, R – радиус описанной окружности. Посмотреть доказательство |
Радиус описанной окружности |
![]() Для любого треугольника справедливо равенство: где a , b , c – стороны треугольника, S – площадь треугольника, R – радиус описанной окружности. Посмотреть доказательство |
Доказательства теорем о свойствах описанной около треугольника окружности
Теорема 3. Все серединные перпендикуляры, проведённые к сторонам произвольного треугольника, пересекаются в одной точке.
Доказательство. Рассмотрим два серединных перпендикуляра, проведённых к сторонам AC и AB треугольника ABC, и обозначим точку их пересечения буквой O (рис. 6).
Рис.6
Поскольку точка O лежит на серединном перпендикуляре к отрезку AC, то в силу теоремы 1 справедливо равенство:
CO = AO .
Поскольку точка O лежит на серединном перпендикуляре к отрезку AB, то в силу теоремы 1 справедливо равенство:
AO = BO .
Следовательно, справедливо равенство:
CO = BO ,
откуда с помощью теоремы 2 заключаем, что точка O лежит на серединном перпендикуляре к отрезку BC. Таким образом, все три серединных перпендикуляра проходят через одну и ту же точку, что и требовалось доказать.
Следствие. Около любого треугольника можно описать окружность. Центром описанной около треугольника окружности является точка, в которой пересекаются все серединные перпендикуляры, проведённые к сторонам треугольника.
Доказательство. Рассмотрим точку O, в которой пересекаются все серединные перпендикуляры, проведённые к сторонам треугольника ABC (рис. 6).
При доказательстве теоремы 3 было получено равенство:
AO = OB = OC ,
из которого вытекает, что окружность с центром в точке O и радиусами OA, OB, OC проходит через все три вершины треугольника ABC, что и требовалось доказать.
Теорема 4 (теорема синусов). Для любого треугольника (рис. 7)
Рис.7
справедливы равенства:
.
Доказательство. Докажем сначала, что длина хорды окружности радиуса R хорды окружности радиуса R, на которую опирается вписанный угол величины φ , вычисляется по формуле:
Рассмотрим сначала случай, когда одна из сторон вписанного угла является диаметром окружности (рис.8).
Рис.8
Угол MPN, как угол,опирающийся на диаметр, является прямым угломугол,опирающийся на диаметр, является прямым углом, и равенство (1) вытекает из определения синуса угла прямоугольного треугольника.
Поскольку все вписанные углы, опирающиеся на одну и ту же дугу, равны, то для произвольного вписанного угла всегда найдется равный ему вписанный угол, у которого одна из сторон является диаметром окружности.
Формула (1) доказана.
Из формулы (1) для вписанного треугольника ABC получаем (рис.7):
Теорема синусов доказана.
На сайте можно также ознакомиться с нашими учебными материалами для подготовки к ЕГЭ и ОГЭ по математике.
Источник
В этой статье Вы сможете найти свойства вписанной в треугольник окружности, а также их доказательства.
Вписанная в треугольник окружность – это такая окружность, которая находится внутри треугольника и при этом касается всех его сторон (то есть все стороны треугольника являются касательными к окружности). Стоит отметить, что в этом случае сам треугольник является описанным вокруг данной окружности.
Рисунок 1
Свойства вписанной в треугольник окружности
- Центр вписанной в треугольник окружности (на рис. 1 – точка О) лежит на пересечении биссектрис треугольника (на рис.1 – АО, ВО и СО).
- В любой треугольник вписывается окружность и притом только одна.
- Радиус вписанной в треугольник окружности равен:
Где S – это площадь треугольника,
p – полупериметр треугольника,
a, b, c – стороны треугольника.
Доказательства свойств
Первое свойство
Доказать, что центр вписанной в треугольник окружности находится на пересечении биссектрис.
Доказательство.
- Опустим из центра окружности перпендикуляры (OL, OK и OM) к каждой из сторон треугольника ABC (рис. 2). Также из каждого угла проведем прямую к центру окружности (OA, OC и OB).
Рисунок 2
- Рассмотрим 2 треугольника AOM и AOK. Они являются прямоугольными, т.к. OM и OK – перпендикуляры к сторонам AC и AB. Гипотенуза OA является общей для обоих треугольников.
- Поскольку касательная к окружности перпендикулярна радиусу, проведенному в точку касания (свойство касательной к окружности), то катеты OМ и OК являются радиусами окружности и, следовательно, равны.
- Из вышесказанного следует, что прямоугольные треугольники AOМ и AOК равны по гипотенузе и катету. Т.к. треугольники равны, то углы OAМ и OAК тоже равны, отсюда следует, что OA – биссектриса угла BAC.
- Аналогичным образом доказывается, что OC – биссектриса угла ACB, а OB – биссектриса угла ABC.
- То есть биссектрисы треугольника пересекаются в одной точке и этой точкой является центр вписанной окружности.
Что и требовалось доказать.
Второе свойство
Доказать, что в любой треугольник можно вписать окружность и притом только одну.
Доказательство
- В треугольник можно вписать окружность только в том случае, если найдется точка равноудаленная от его сторон.
- Проведем 2 биссектрисы OA и OC. Опустим из точки их пресечения перпендикуляры (OK, OL и OM) ко всем трем сторонам треугольника ABC (рис. 3).
Рисунок 3
- Рассмотрим треугольники AOK и AOM.
- У них общая гипотенуза AO. Углы OAK и OAM равны (т.к. OA – биссектриса угла KAM). Углы OKA и OMA прямые (т.е. тоже равны), т.к. OK и OM – перпендикуляры к сторонам AB и AC соответственно.
- Поскольку 2 пары углов равны, то и 3-я пара (AOM и AOK) также является равной.
- Из вышенаписанного следует, что треугольники AOK и AOM равны по стороне (AO) и 2-м прилежащим к ней углам (рис. 4).
Рисунок 4
- Отсюда следует, что стороны OM и OK равны, т.е. равноудалены от сторон треугольника AC и AB соответственно.
- Аналогичным образом доказывается, что OM и OL равны, т.е. они равноудалены от сторон треугольника AC и BC соответственно.
- Из вышенаписанного следует, что точка O равноудалена от сторон треугольника, т.е. является центром вписанной окружности.
- Аналогичным образом можно найти точку внутри любого треугольника, которая будет равноудалена от его сторон, то есть будет центром вписанной в этот треугольник окружности.
- Из вышенаписанного следует, что в любой треугольник можно вписать окружность.
- Следует отметить, что центр данной окружности лежит на пересечении биссектрис треугольника.
- Допустим, что в треугольник можно вписать две (или более) окружности.
- Проведя 3 отрезка из вершин треугольника к центру этой окружности и, опустив перпендикуляры из этого центра к каждой из сторон треугольника, мы сможем доказать, что эта окружность лежит на пересечении биссектрис треугольника (см. доказательство первого свойства).
- То есть центр этой окружности совпадает с центром первой окружности, уже вписанной в треугольник, а ее радиус равен перпендикуляру, опущенному на сторону треугольника (как и в первом случае). Это говорит о том, что данные окружности совпадают.
- Аналогичным образом можно доказать, что любая новая вписанная окружность совпадает с первой, которую мы впишем.
- То есть вписать в треугольник можно только одну окружность.
Что и требовалось доказать.
Третье свойство
Доказать, что радиус вписанной окружности r равен отношению площади треугольника S к полупериметру p.
А также равенство:
Доказательство.
Рисунок 5
Рассмотрим произвольный треугольник ABC со сторонами a, b и c (рис 5). Полупериметр данного треугольника p рассчитывается по формуле:
- Центр нашей окружности (точка O на рис. 5) находиться на пересечении биссектрис треугольника. Отрезки OA, OB и OC, соединяющие O с вершинами треугольника АВС, делят треугольник на три: AOC, COB, BOA. Площадь треугольника ABC можно найти как сумму площадей этих трех треугольников.
- Поскольку площадь любого треугольника равна половине произведения его основания на высоту, а высота треугольников AOC, COB, BOA равна радиусу окружности r, то площади треугольников AOC, COB и BOA можно найти как:
- Выразим площадь S треугольника ABC через сумму площадей этих трех треугольников:
- Заметив, что второй множитель – это полупериметр треугольника ABC, можно представить наше равенство в виде:
Или
- Итак, мы доказали, что радиус вписанной окружности равен отношению площади треугольника к полупериметру.
- Вспомним формулу Герона, которая в нашем случае будет иметь вид:
- Теперь радиус можно выразить как:
Что и требовалось доказать.
Источник
Окружность вписана в n-угольник, если она касается всех сторон этого n-угольника (рис. 8.106).
Окружность описана около n-угольника, если все вершины n-угольника лежат на окружности (рис. 8.107).
Свойства вписанной окружности
1. Окружность можно вписать в любой треугольник.
2. Окружность можно вписать в четырехугольник, если суммы длин его противолежащих сторон равны.
Например, на рисунке 8.106 .
Так, окружность можно вписать в квадрат и в ромб, но нельзя вписать в параллелограмм и в прямоугольник.
Свойства описанной окружности
1. Окружность можно описать около любого треугольника.
2. Окружность можно описать около четырехугольника, если суммы его противолежащих углов равны.
Например, на рисунке 8.107 .
Так, окружность можно описать около квадрата и прямоугольника, но нельзя описать около параллелограмма и ромба.
Расположение центров окружностей, описанных около треугольника:
1) центр окружности расположен на пересечении серединных перпендикуляров к сторонам треугольника;
2) если треугольник остроугольный, то центр окружности расположен в этом треугольнике:
а) в равностороннем треугольнике центром окружности является точка пересечения высот, биссектрис, медиан треугольника (центры вписанной и описанной окружностей совпадают (рис. 8.108);
б) в равнобедренном треугольнике центр окружности расположен на биссектрисе, проведенной из вершины треугольника к его основанию (рис. 8.109);
3) если треугольник прямоугольный, то центр окружности расположен на середине гипотенузы (рис. 8.110);
4) если треугольник тупоугольный, то центр окружности расположен вне треугольника (рис. 8.111).
Расположение центров окружностей, вписанных в треугольник:
1) центр окружности, вписанной в треугольник, расположен в этом треугольнике (рис. 8.112 – 8.115);
2) центром окружности является точка пересечения биссектрис треугольника;
3) в равностороннем треугольнике центром окружности является точка пересечения высот, биссектрис, медиан треугольника.
Формулы для вычисления радиусов вписанной и описанной окружностей
Радиус окружности, описанной около многоугольника, как правило, обозначают , а радиус окружности, вписанной в многоугольник, обозначают :
1) для равностороннего треугольника со стороной :
, (8.34)
; (8.35)
2) для произвольного треугольника со сторонами и площадью :
, (8.36)
; (8.37)
3) для прямоугольного треугольника с катетами и гипотенузой :
, (8.38)
; (8.39)
4) для квадрата со стороной и диагональю :
, (8.40)
; (8.41)
5) для прямоугольника с диагональю :
; (8.42)
6) для ромба с высотой :
; (8.43)
7) для трапеции с высотой , при условии, что в трапецию можно вписать окружность:
. (8.44)
Если около трапеции можно описать окружность, то, проведя диагональ трапеции и рассмотрев один из полученных треугольников со сторонами и площадью , по формуле найдем радиус окружности описанной около треугольника, а значит и около трапеции (рис. 8.116);
8) для правильного шестиугольника со стороной :
, (8.45)
. (8.46)
Правильный шестиугольник состоит из шести правильных треугольников (рис. 8.117) и точка является центром вписанной в него и описанной около него окружностей.
Пример 1. Найдите сторону квадрата, если известно, что разность между площадью квадрата и площадью вписанного в него круга равна .
Решение. Так как площадь круга радиуса находят по формуле 8.32, а площадь квадрата со стороной находят по формуле , то согласно условию задачи запишем: , .
А так как , то , , , , .
Ответ: .
Пример 2. Площадь прямоугольника равна 4, а разность длин его смежных сторон рана 3. Найдите радиус окружности, описанной около этого прямоугольника.
Решение. Площадь прямоугольника со смежными сторонами и находят по формуле .
Пусть , тогда (рис. 8.118).
Получим: , , откуда , следовательно, , .
По теореме Пифагора найдем диагональ прямоугольника: , . Согласно формуле 8.42 .
Ответ: .
Пример 3. Найдите радиус окружности, вписанной в ромб, если его диагонали равны 6 и 8.
Решение. По теореме Пифагора найдем сторону ромба (рис. 8.119):
, , .
По формуле найдем площадь ромба: .
Но площадь ромба можно найти и по формуле , а так как , то . Тогда , а .
Ответ: 2,4.
Пример 4. Найдите длину окружности, вписанной в правильный треугольник, если его площадь равна .
Решение. Площадь правильного треугольника со стороной находят по формуле: .
Зная площадь треугольника, найдем его сторону: , , .
По формуле 8.35 найдем радиус окружности, вписанной в этот треугольник: .
По формуле 8.30 найдем длину окружности: .
Ответ: .
Пример 5. Радиус окружности, описанной около равнобедренного прямоугольного треугольника равен 2. Найдите радиус окружности, вписанной в этот треугольник.
Решение. Радиус окружности, описанной около прямоугольного треугольника с гипотенузой находят по формуле 8.38. Тогда .
Так как треугольник равнобедренный, то его катеты и раны и по теореме Пифагора , откуда , .
Радиус окружности, вписанной в прямоугольный треугольник, находят по формуле 8.39. В нашем случае , .
Ответ: .
Пример 6. Один из катетов прямоугольного треугольника равен 8, а радиус окружности, вписанной в треугольник равен 3. Найдите площадь треугольника.
Решение. Рассмотрим прямоугольный треугольник . Точка является центром вписанной в треугольник окружности (рис. 8.120).
Так как радиусы вписанной в треугольник окружности перпендикулярны сторонам треугольника в точках касания, то имеем квадрат со стороной 3. Если катет , а сторона квадрата , то .
Пусть отрезок . По свойству касательных и .
Тогда по теореме Пифагора или , откуда , .
Найдем катет : .
Найдем площадь треугольника: , .
Ответ: 60.
Пример 7. Окружность, центр которой расположен на большей стороне треугольника, делит эту сторону на отрезки 4 и 8 и касается двух других его сторон, длина одной из которых равна 6. Найдите радиус окружности, вписанной в этот треугольник (рис.8.121).
Решение. Согласно свойству биссектрисы треугольника запишем: , откуда .
Радиус окружности, вписанной в треугольник, найдем по формуле 8.37.
В свою очередь по формуле Герона найдем площадь треугольника. Так как , то .
Тогда .
Ответ: .
Пример 8. В прямоугольную трапецию вписана окружность радиуса 3, которая в точке касания делит ее боковую сторону на отрезки 4 и 5. Найдите площадь трапеции.
Решение. Согласно условию задачи и рисунку 8.122, запишем: , .
По свойству четырехугольника, описанного около окружности, получим: , , .
Согласно формуле найдем площадь трапеции: .
Ответ: 45.
Пример 9. Длины оснований равнобедренной трапеции относятся как , а длина ее высоты равна 17. Вычислите площадь круга, описанного около трапеции, если известно, что средняя линия трапеции равна ее высоте.
Решение. Рассмотрим равнобедренную трапецию (рис. 8.123) и проведем диагональ трапеции .
Радиус окружности, описанной около треугольника , найдем по формуле 8.36:
, .
Зная, что и вводя коэффициент пропорциональности , получим , .
Так как длина средней линии трапеции равна высоте трапеции, то , откуда . Тогда , .
Поскольку четырехугольник является прямоугольником, то , тогда .
Согласно теореме Пифагора запишем:
, ;
, .
По формуле 8.36 найдем радиус окружности, описанной около треугольника , а, следовательно, и около трапеции :
.
Согласно формуле 8.32 найдем площадь круга: .
Ответ: .
Пример 10. В правильный шестиугольник вписана окружность и около него описана окружность. Найдите площадь образовавшегося кольца, если сторона шестиугольника равна .
Решение. По формуле 8.45 найдем радиус окружности, описанной около правильного шестиугольника: .
По формуле 8.46 найдем радиус окружности, вписанной в этот шестиугольник. Так как , то .
Площадь круга находят по формуле 8.32. Тогда , а .
Найдем площадь кольца: , .
Ответ: .
1. В любой треугольник можно вписать окружность и около любого треугольника можно описать окружность.
2. Не во всякий четырехугольник можно вписать окружность. Например, окружность можно вписать в ромб и квадрат, но нельзя вписать в параллелограмм и прямоугольник.
3. Не около всякого четырехугольника можно описать окружность. Например, окружность можно описать около квадрата и прямоугольника, но нельзя описать около параллелограмма и ромба.
4. Не во всякую трапецию можно писать окружность и не около всякой трапеции можно описать окружность. Описать окружность можно только около равнобедренной трапеции.
5. Если многоугольник правильный (все его стороны и все его углы равны между собой), то в него всегда можно вписать окружность и около него всегда можно описать окружность. Причем, центры этих окружностей совпадают.
Длину окружности радиуса находят по формуле:
. (8.30)
Площадь круга радиуса находят по формуле:
. (8.32)
Источник