В каком биополимере содержится информация рнк

В каком биополимере содержится информация рнк thumbnail

>>> Перейти на мобильный размер сайта >>>

   
   

Биология

Учебник для 10-11 классов

Типы нуклеиновых кислот. В клетках имеются два типа нуклеиновых кислот: дезоксирибонуклеиновая кислота (ДНК) и рибонуклеиновая кислота (РНК). Эти биополимеры состоят из мономеров, называемых нуклеотидами. Мономеры-нуклеотиды ДНК и РНК сходны в основных чертах строения. Каждый нуклеотид состоит из трех компонентов, соединенных прочными химическими связями.

Каждый из нуклеотидов, входящих в состав РНК, содержит пятиуглеродный сахар — рибозу; одно из четырех органических соединений, которые называют азотистыми основаниями, — аденин, гуанин, цитозин, урацил (А, Г, Ц, У); остаток фосфорной кислоты.

Нуклеотиды, входящие в состав ДНК, содержат пятиуглеродный сахар — дезоксирибозу, одно из четырех азотистых оснований: аденин, гуанин, цитозин, тимин (А, Г, Ц, Т); остаток фосфорной кислоты.

В составе нуклеотидов к молекуле рибозы (или дезоксирибозы) с одной стороны присоединено азотистое основание, а с другой — остаток фосфорной кислоты. Нуклеотиды соединяются между собой в длинные цепи. Остов такой цепи образуют регулярно чередующиеся остатки сахара и фосфорной кислоты, а боковые группы этой цепи — четыре типа нерегулярно чередующихся азотистых оснований.

Схема строения ДНК. Многоточием обозначены водородные связи

Рис. 7. Схема строения ДНК. Многоточием обозначены водородные связи

Молекула ДНК представляет собой структуру, состоящую из двух нитей, которые по всей длине соединены друг с другом водородными связями (рис. 7). Такую структуру, свойственную только молекулам ДНК, называют двойной спиралью. Особенностью структуры ДНК является то, что против азотистого основания А в одной цепи лежит азотистое основание Т в другой цепи, а против азотистого основания Г всегда расположено азотистое основание Ц. Схематически сказанное можно выразить следующим образом:

А (аденин) — Т (тимин)

Т (тимин) — А (аденин)

Г (гуанин) — Ц (цитозин)

Ц (цитозин) — Г (гуанин)

Эти пары оснований называют комплементарными основаниями (дополняющими друг друга). Нити ДНК, в которых основания расположены комплементарно друг другу, называют комплементарными нитями. На рисунке 8 приведены две нити ДНК, которые соединены комплементарными участками.

Участок двуспиральной молекулы ДНК

Рис. 8. Участок двуспиральной молекулы ДНК

Модель строения молекулы ДНК предложили Дж. Уотсон и Ф. Крик в 1953 г. Она полностью подтверждена экспериментально и сыграла исключительно важную роль в развитии молекулярной биологии и генетики.

Порядок расположения нуклеотидов в молекулах ДНК определяет порядок расположения аминокислот в линейных молекулах белков, т. е. их первичную структуру. Набор белков (ферментов, гормонов и др.) определяет свойства клетки и организма. Молекулы ДНК хранят сведения об этих свойствах и передают их поколениям потомков, т. е. являются носителями наследственной информации. Молекулы ДНК в основном находятся в ядрах клеток и в небольшом количестве в митохондриях и хлоропластах.

Основные виды РНК. Наследственная информация, хранящаяся в молекулах ДНК, реализуется через молекулы белков. Информация о строении белка передается в цитоплазму особыми молекулами РНК, которые называются информационными (иРНК). Информационная РНК переносится в цитоплазму, где с помощью специальных органоидов — рибосом идет синтез белка. Именно информационная РНК, которая строится комплементарно одной из нитей ДНК, определяет порядок расположения аминокислот в белковых молекулах.

В синтезе белка принимает участие и другой вид РНК — транспортная (тРНК), которая подносит аминокислоты к месту образования белковых молекул — рибосомам, своеобразным фабрикам по производству белков.

В состав рибосом входит третий вид РНК, так называемая рибосомная (рРНК), которая определяет структуру и функционирование рибосом.

Каждая молекула РНК в отличие от молекулы ДНК представлена одной нитью; вместо дезоксирибозы она содержит рибозу и вместо тимина — урацил.

Итак, нуклеиновые кислоты выполняют в клетке важнейшие биологические функции. В ДНК хранится наследственная информация о всех свойствах клетки и организма в целом. Различные виды РНК принимают участие в реализации наследственной информации через синтез белка.

  1. Рассмотрите рисунок 7 и скажите, в чем особенность строения молекулы ДНК. Какие компоненты входят в состав нуклеотидов?
  2. Почему постоянство содержания ДНК в разных клетках организма считается доказательством того, что ДНК представляет собой генетический материал?
  3. Используя таблицу, дайте сравнительную характеристику ДНК и РНК.

Сравнительная характеристика ДНК и РНК

  1. Фрагмент одной цепи ДНК имеет следующий состав: —А—А—А—Т—Т—Ц—Ц—Г—Г—. Достройте вторую цепь.
  2. В молекуле ДНК тиминов насчитывается 20% от общего числа азотистых оснований. Определите количество азотистых оснований аденина, гуанина и цитозина.
  3. В чем сходство и различие между белками и нуклеиновыми кислотами?

Источник

Центральную догму биологии, сформулированную Фрэнсисом Криком в конце 1950-х, изучают в классическом виде: ДНК—>РНК—>белок. Но данных достаточно, чтобы усомниться в буквальном понимании этого главного принципа жизни.

Последний пример: в июньской публикации Scientific Reports российские ученые из Института биоорганической химии и Федерального научно-клинического центра физико-химической медицины показали, что разнообразие изоформ белков в клетках значительно меньше теоретически возможного. Журналисты поспешили сообщить, что меняется представление о центральной догме молекулярной биологии. Однако догма меняется уже 70 лет, потому что исходно была всего лишь гипотезой. Словом “догма” ее создатель Крик назвал потому, что нравилось это слово! Важно другое: как и почему меняется главная гипотеза молекулярной биологии.

Слишком много РНК

Генетическая информация считывается с кодирующих последовательностей генома, представленных генами. Только малая часть генома эукариот (растения, животные, грибы) содержит гены, а основная часть представлена протяженными нуклеотидными последовательностями с малоизученными функциями. В геноме человека только четверть покрыта генами и только 1% последовательностей ДНК кодирует информацию, записываемую в функциональных молекулах РНК (часть догмы “ДНК–>РНК”). То есть 1% геномной ДНК содержит информацию обо всех молекулах РНК. Зачем нужны оставшиеся 99%?

В последние годы стало понятно, что межгенные участки ДНК несут в себе регуляторную функцию: в них заложены системы и элементы, обеспечивающие тонкую настройку работы генов, их включение или выключение в определенных тканях организма или на конкретных стадиях развития. С такими элементами связываются различные комплексы, которые содержат молекулы регуляторных белков и РНК. Уже на этом уровне очевидно, что модель “ДНК–>РНК–>белок” полноценно не работает, так как основная масса ДНК не дает начала РНК, а несет другие функции.

Читайте также:  Какой витамин содержатся в яблоке

Часть генов кодирует РНК с регуляторными функциями. Эти РНК не содержат информации о последовательности белка, а преимущественно организуют синтез белка в клетке. Основная часть таких РНК — компоненты рибосом (рибосомальные РНК), комплексы, осуществляющие трансляцию, а также молекулы-переносчики аминокислот (транспортные РНК), необходимые участникам процесса синтеза белка на матрице РНК (трансляции). 90% всей РНК клетки относится к перечисленным типам.

Среди оставшихся 10% молекул РНК представлены все белок-кодирующие РНК, но даже среди этих РНК найдены некодирующие молекулы, в частности, малые ядерные РНК. Эти РНК — необходимые компоненты комплекса сплайсинга. Сплайсинг — процесс удаления из первичной молекулы РНК некодирующих участков (интронов) и последовательного соединения кодирующих (экзонов); в итоге получается матричная РНК (мРНК), содержащая готовую к считыванию информацию о последовательности белка.

Именно этот комплекс готовит предшественников мРНК к синтезу правильных белков — путем вырезания из середины РНК последовательностей, не несущих в себе информации о составе белка, но содержащих регуляторные элементы. Так что и часть догмы “РНК –> белок” имеет свои ограничения.

Молекулярный “контроль качества”

А что мы знаем про так называемые “белок-кодирующие” гены? В клетках прокариот (бактерии) для такого типа генов все просто: на матрице ДНК транскрибируются молекулы РНК, на их базе идет синтез белковых молекул. Чаще всего молекулы РНК готовы для синтеза уже во время транскрипции.

В клетках эукариот все гораздо сложней: синтезирующиеся в процессе транскрипции молекулы РНК не готовы к трансляции (синтезу белка), прежде они должны претерпеть ряд изменений. Определенный набор модификаций вносится на концы молекул РНК (и РНК становится стабильной, а также попадает в определенные зоны клетки — “фабрики белка”), из середины молекул вырезаются интроны. Без сплайсинга и объединения экзонов правильную белковую молекулу не синтезировать.

С усложнением геномов вклад сплайсинга в процесс созревания мРНК увеличивается: у дрожжей только 4% белок-кодирующих генов подвергается сплайсингу, у дрозофилы — 83%, а у человека — 94%. Основная часть генов человека содержит более одного интрона в своем составе, и более половины генов человека могут сплайсироваться несколькими способами. Так что сплайсинг — это дополнительный регуляторный механизм, контролирующий количество “правильных” РНК, на матрице которых может запускаться синтез белковых молекул.

Кроме этого, сплайсинг часто является своего рода “контролем качества” молекул РНК, регулирует их стабильность. А так как альтернативный сплайсинг приводит к образованию на основе одной и той же молекулы РНК разных вариантов зрелых мРНК, это способ обеспечить дополнительное разнообразие белков в клетке. Такое разнообразие нужно для лучшей приспосабливаемости организма: разные изоформы белка могут работать в разных типах клеток, транспортироваться в разные компартменты или формировать разные поверхности узнавания для лигандов и т. д.

О чем “шумят” гены

Далеко не для всех изоформ белков известны функции, а во многих случаях для альтернативно сплайсированных молекул РНК не удается обнаружить белковый продукт. Авторы указанной статьи в Scientific Reports, изучавшие продукты альтернативного сплайсинга на модели мха, не обнаружили белков для большей части альтернативно сплайсированных молекул мРНК. В работах, выполненных на других модельных организмах, для многих альтернативно сплайсированных вариантов мРНК белковые молекулы также не были найдены.

Возможно, такие молекулы — побочный продукт регуляции “количества” генной экспрессии, “генный шум”; либо некоторые изоформы белка нужны в крайне ограниченных количествах.

Кроме этого, во многих интронах генов находятся регуляторные элементы, управляющие процессами сплайсинга, и там же могут находиться некодирующие РНК, участвующие в клеточном метаболизме. Так что и многообразие изоформ, и даже экспрессии белка могут контролироваться непосредственно молекулами РНК, без участия ДНК.

С развитием полногеномных технологий появляется все больше работ о некодирующих молекулах РНК. В геноме человека описан огромный пул таких РНК — “длинных” и “коротких”: они осуществляют важные регуляторные функции в клетке. Эти РНК следят за стабильностью белок-кодирующих РНК, активируют или репрессируют гены, являются сенсорами при разных стрессах. Функции основной части некодирующих РНК еще не описаны, это целый мир, без которого клетка и организм не могут существовать.

Накопленные на сегодня данные наталкивают на мысль, что на молекулярном уровне жизнь — это форма реализации функций РНК. ДНК хранит информацию, белок отвечает за клеточный метаболизм, а жизнь клетки (и организма) организуется и контролируется на этапе функционирования молекул РНК.

Существуют даже предположения, что именно РНК на заре эволюции была первым биополимером, способным к самовоспроизводству. РНК, с одной стороны, подобно ДНК, способна быть хранилищем генетической информации (геномы огромной группы вирусов представлены РНК). С другой — известны и РНК с каталитической функцией, способные выполнять часть функций белков. Сторонники РНК-мира считают, что свойства РНК, позволившие им воспроизводить за счет собственной ферментной активности записанную в последовательностях нуклеотидов информацию, сыграли решающую роль в становлении генетического аппарата живых организмов.

Время для подобных обобщений еще не пришло. Ученые только начинают понимать, что система, которую они изучают уже 100 лет, гораздо сложней, чем казалось даже 20 лет назад.

Оксана Максименко, кандидат биологических наук, Институт биологии гена РАН

Источник

Зубр

1. Участок одной из двух цепей молекулы ДНК содержит 300 нуклеотидов с аденином (А), 100 нуклеотидов с тимином (Т), 150 нуклеотидов с гуанином (Г) и 200 нуклеотидов с цитозином (Ц). Какое число нуклеотидов с А, Т, Г и Ц содержится в двухцепочечной молекуле ДНК? Сколько аминокислот должен содержать белок, кодируемый этим участком молекулы ДНК? Ответ поясните.

Ответ

Если в одной цепи ДНК 300 нуклеотидов с аденином, 100 нуклеотидов с тимином, 150 нуклеотидов с гуанином и 200 нуклеотидов с цитозином, то в комплементарной ей цепи, соответственно, 300 нуклеотидов с тимином, 100 нуклеотидов с аденином, 150 нуклеотидов с цитозином и 200 нуклеотидов с гуанином. Следовательно, в двуцепочечной ДНК 400 нуклеотидов с аденином, 400 нуклеотидов с тимином, 350 нуклеотидов с гуанином и 350 нуклеотидов с цитозином. Если в одной цепи ДНК 300 + 100 +150 + 200 = 750 нуклеотидов, значит, там 750 / 3 = 250 триплетов. Следовательно, этот участок ДНК кодирует 250 аминокислот.

Читайте также:  В каких камнях может содержатся золото

2. Чем строение молекулы ДНК отличается от строения молекулы иРНК?

Ответ

1) В состав ДНК входит дезоксирибоза, а в состав РНК – рибоза.
2) В состав ДНК входит тимин, в РНК – урацил.
3) ДНК двухцепочечная, РНК одноцепочечная.

3. Почему в составе ДНК имеет место строгое соотношение компонентов?

Ответ

1) Нуклеотиды (мономеры ДНК) состоят из азотистого основания, дезоксирибозы и фосфорной кислоты. Поэтому количество остатков азотистых оснований, дезоксирибозы и фосфорный кислоты равно.
2) Согласно правилу комплементарности, напротив аденина в ДНК стоит тимин, а напротив гуанина – цитозин. Поэтому количество аденина равно количеству тимина, количество гуанина равно количеству цитозина.

4. Строение молекулы какого мономера изображено на представленной схеме? Что обозначено буквами А, Б, В? Назовите виды биополимеров, в состав которых входит данный мономер.

Ответ

1) молекула урацилового нуклеотида РНК;
2) А – урацил – азотистое основание, Б – углевод рибоза, В – остаток фосфорной кислоты;
3) иРНК, тРНК, рРНК.

5. Рассмотрите предложенную схему строения молекулы ДНК. Запишите в ответе пропущенный термин, обозначенный на схеме знаком вопроса.

6. Рассмотрите предложенную схему строения нуклеотида РНК. Запишите
в ответе пропущенный термин, обозначенный на схеме вопросительным знаком.

7. Назовите мономер, изображенный на рисунке. Ответ поясните. Что обозначено цифрами 1, 2, 3? Какую функцию в клетке выполняет биополимер, в состав которого входит этот мономер?

Ответ

1) нуклеотид ДНК, так как в состав входит азотистое основание тимин (Т);
2) 1 – азотистое основание тимин, 2 – пятиуглеродный сахар дезоксирибоза, 3 – остаток фосфорной кислоты;
3) хранение и передача наследственной информации в ряду поколений

8. В 1958 г. учёными был установлен полуконсервативный принцип репликации ДНК. В качестве объекта эксперимента использовали кишечную палочку Escherichia сoli. Бактерии длительное время выращивались на питательной среде, содержащей тяжёлый изотоп азота 15N. Затем данные бактерии были перенесены на питательную среду, содержащую лёгкий изотоп азота 14N, для однократного деления. Все клетки, полученные после этого деления, содержали примерно равные количества цепей ДНК с лёгкими (14N) и тяжёлыми (15N) изотопами азота. Объясните результат эксперимента, исходя из принципа полуконсервативной репликации ДНК. Как называется используемый в эксперименте метод?

Ответ

1) Поскольку бактерии долго выращивались на среде 15N, то вся их ДНК содержала 15N.
2) Перед делением ДНК удвоилась, получились две двойные молекулы ДНК, каждая из которых состояла из цепи 15N (матрица) и цепи 14N (продукт). Таким образом, количество цепей 15N и 14N получилось одинаковым.
3) Метод меченых атомов.

9. Лекарственный препарат рекомендуется применять при инфекционно-воспалительных процессах, вызванных патогенными бактериями. Препарат блокирует действие специфического белка-фермента ДНК-гиразы и репликацию бактериальной ДНК. Что происходит с клетками бактерий в результате приёма данного препарата? Почему он не действует на клетки организма человека таким же образом? Ответ поясните.

Ответ

1) В результате приема данного препарата у бактерий не происходит удвоение ДНК и они перестают делиться.
2) Бактериальные ферменты, отвечающие за репликацию, отличаются от ферментов эукариот (человека), поэтому препарат не действует на клетки организма человека.

10. Чем объясняются различия в названиях разных нуклеиновых кислот?

Ответ

1) Различия в названиях ДНК и РНК объясняются составом их нуклеотидов: в нуклеотидах ДНК углевод дезоксирибоза, а в РНК — рибоза.
2) Различия в названиях видов РНК (информационная, транспортная, рибосомная) связаны с выполняемыми ими функциями.

11. Найдите три ошибки в приведённом тексте. Укажите номера предложений, в которых они допущены, объясните их. (1) Молекула ДНК состоит из мономеров — нуклеотидов. (2) Каждый нуклеотид ДНК состоит из азотистого основания, углевода рибозы и остатка фосфорной кислоты. (3) Нуклеотиды двух цепей ДНК связаны нековалентными водородными связями по правилу комплементарности. (4) Четыре нуклеотида в цепи молекулы ДНК кодируют одну аминокислоту в молекуле белка, информация о строении которого заложена в гене. (5) ДНК контролирует синтез иРНК на одной из своих цепей. (6) Процесс синтеза иРНК на матрице ДНК называется трансляцией.

Ответ

2) В состав ДНК входит углевод дезоксирибоза.
4) Код ДНК триплетен, т. е. состоит из трёх нуклеотидов.
6) Процесс синтеза иРНК на ДНК называется транскрипцией.

12. В чем состоит химическое различие РНК- и ДНК-содержащих вирусов?

Ответ

1) различия в содержании азотистых оснований: в РНК – урацил, в ДНК – тимин;
2) различия в содержании моносахаридов: в РНК – рибоза, в ДНК – дезоксирибоза

Источник

План

  1. Типы нуклеиновых кислот. Строение нуклеотидов.
  2. ДНК ее строение и роль в клетке
  3. Типы РНК и ее функции в клетке
  4. АТФ
  5. Витамины

1. Нуклеиновые кислоты (лат. nucleus — ядро) — при­родныевысокомолекулярные (с молекулярной массой от 10 000до нескольких миллионов) органические полиме­ры, обеспечивающие хранение и передачу наследствен­ной (генетической) информации в живых организмах, т. е. определяющие основные свойства живого.

Нуклеотиды— мономеры нуклеиновых кислот ДНК и РНК, состоящие из азотистых (пуриновых или пиримидиновых) оснований, остатка фосфорной кислоты и пентозы (рибозы или дезоксирибозы). Дезоксирибоза имеет на один атом кислорода меньше, чем рибоза (дезоксирибоза в переводе означает «лишенная кисло­рода рибоза»). Нуклеотиды отличаются друг от друга только азотистыми основаниями, в соответствии с ко­торыми их называют: нуклеотид с азотистым основа­нием аденин (сокращенно А), нуклеотид с гуанином (Г), нуклеотид с тимином (Т) и нуклеотид с цитозином (Ц). По размерам А равен Г, а Т равен Ц; размеры А и Г несколько больше, чем Т и Ц.

Читайте также:  В каких витаминах содержатся фолаты

• Нуклеозиды — предшественники нуклеотидов, сое­динения азотистых оснований с пентозами посредст­вом атома азота. Нуклеозид, соединяясь с одной моле­кулой фосфорной кислоты, образует более сложное вещество — нуклеотид.

2. Дезоксирибонуклеиновая кислота (ДНК)— носитель генетической информации, содержится в хромосомах кле­точного ядра, в эквивалентных структурах митохондрий, хлоропластов, в нуклеотидах прокариотных клеток и во многих вирусах.

Молекула ДНК представляет собой двойной неразветвленный линейный полимер, имеет вид правозакрученной спирали (может быть и левозакрученная спираль). Мономером является дезоксирибонуклеотид, представлен­ный четырьмя видами: аденином, тимином, гуанином и цитозином. Нуклеотиды соединяются между собой ковалентными, фосфордиэфирными связями в одну цепь: дезоксирибоза одного нуклеотида соединяется с остатком фосфорной кислоты последующего нуклеотида. Две цепи нуклеотидов соединяются в одну молекулу ДНК по всей длине водородными связями. Водородные связи возни­кают между пуриновыми и пиримидиновыми азотными основаниями; формируется двойная цепочка одной моле­кулы ДНК: адениновый нуклеотид одной цепи соединя­ется с тиминовым другой цепи; гуаниновый одной цепи с цитозиновым другой. Эти пары оснований, как и нуклео­тиды, называются комплементарными. Принцип форми­рования двуцепочечной молекулы ДНК — принцип ком­плементарное— дополнительности.

Правило Чаргаффа.Число пуриновых оснований в ДНК всегда равно числу пиримидиновых, количество тимина равно количеству аденина, а гуанина — коли­честву цитозина.

Если известна последовательность оснований в од­ной цепи, например Т—Ц—А—Т—Г, то на основе комплементарности в другой цепи последовательность ос­нований будет следующей: А—Г—Т—А—Ц.

Цепи нуклеотидов образуют правозакрученные (не­которые — левозакрученные) объемные спирали по 10 оснований в каждом витке. При этом последователь­ность соединения нуклеотидов одной цепи противопо­ложна таковой в другой, т. е. цепи, составляющие одну молекулу ДНК, разнонаправленны, или антипараллельны. Последовательность межнуклеотидных связей в двух цепях направлена в противоположные стороны — 3’—5′ и 5’—3′. Сахаро-фосфатные группировки нуклеоти­дов находятся снаружи, а азотистые основания — внутри.

Модель строения ДНК предложена в 1953 г. амери­канским биохимиком Джеймсом Уотсоном и англий­ским физиком Френсисом Криком. Она полностью подтверждена экспериментально и сыграла важную роль в развитии молекулярной биологии и генетики Расположение четырех типов нуклеотидов в цепях ДНК содержит важную информацию: оно опре­деляет последовательность аминокислот в линейных молекулах белка, т. е. их первичную структуру. На­бор этих белков, в свою очередь, в качестве ферментов или гормонов определяет свойства клеток и организ­ма. Таким образом, ДНК носитель информации.

3.Рибонуклеиновая кислота (РНК).

Одноцепочечныйполимер РНК переносит информацию о последователь­ности аминокислот в белках, о структуре белков от хро­мосом к месту их синтеза в рибосомах и участвует в синтезе белков.

– Двуцепочечные РНК — хранители генетической ин­формации у ряда вирусов; они выполняют у них фун­кцию хромосом.

Мономерами РНК, одно- и двуцепочечной, являют­ся рибонуклеотиды: адениновый, цитозиновый, урациловый вместо тиминового (в ДНК) и гуаниновый. Связь между нуклеотидами осуще­ствляется так же, как и в од­ной цепи ДНК: через угле­вод и остаток фосфорной кислоты. В отличие от ДНК, содержание которой в клетках организмов определен­ных видов постоянно, содер­жание РНК в них сильно колеблется. Оно заметно по­вышено в клетках, где про­исходит синтез белка.

Функции РНК

транспортная РНК(т- РНК) в основном содержится в цитоплазме, ее моле­кулы самые короткие (80—100 нуклеотидов) (рис. 4). Функция состоит в переносе аминокислот в рибосомы, где осуществляется синтез белка. Из всей РНК клет­ки на долю т-РНК приходится примерно 10%;

рибосомная РНК (р-РНК) содержится в рибо­сомах, ее молекулы относительно невелики (3000—5000 нуклеотидов), она составляет большую часть РНК, на­ходящейся в клетке, на ее долю приходится до 90%;

информационная, или матричная, РНК (и-РНК) содержится в ядре и цитоплазме, размер этих РНК зави­сит от длины участка ДНК, на котором они синтезиро­ваны. Молекулы иРНК могут состоять из 300—30 000 нуклеотидов; иРНК переносит к рибосомам информа­цию о последовательности аминокислот в белках, кото­рые должны быть синтезированы.

4. Аденозинтрифосфориая кислота(АТФ) — особый нуклеотид, играющий наиважнейшую роль в энергетике клетки, ее молекулы обеспечивают энергией все виды клеточных функций: биосинтез, механическую работу, активный перенос веществ через мембрану и т. д. Моле­кула АТФ состоит из остатка азотистого основания аде-нина, рибозы и трех остатков фосфорной кислоты. Под действием фермента АТФазы из АТФ отщепляются остатки фосфорной кислоты: при отщеплении одной молекулы фосфорной кислоты АТФ переходит в АДФ(аденозиндифосфорную кислоту), при отщеплении двух молекул — в АМФ (аденозинмонофосфорную кислоту). Отщепление фосфорной группы сопровождается выде­лением энергии (порядка 419 кДж/моль вместо 12 кДж, выделяемых при разрыве обычных ковалентных связей). Такую связь принято обозначать значком «°°» и назы­вать макроэргической. В АТФ имеются две макроэргические связи, она наиболее энергоемка. Основ­ной синтез АТФ осуществляется в митохондриях.

5. Витамины.К конечным продуктам биосинтеза принадлежат витамины. К ним относят жизненно важные соединения, кото­рые организмы данного вида не способны синтезировать сами, а должны получать в готовом виде извне. Например, витамин С (аскорбиновая кислота) синтезируется в клетках большинства животных, а также в клетках растений и микроорганизмов. Клетки человека, человекообразных обезьян, морских свинок, некоторых видов летучих мышей утратили способность синте­зировать аскорбиновую кислоту. Поэтому она является витами­ном только для человека и перечисленных животных. Витамин РР животные не способны синтезировать, но его синтезируют все растения и многие бактерии.

Большинство известных витаминов в клетке становятся со­ставными частями ферментов и участвуют в биохимических ре­акциях. Суточная потребность человека в каждом витамине со­ставляет несколько микрограммов.

Только витамин С нужен в количестве около 100 мг в сутки. Недостаток ряда витаминов в организме человека и жи­вотных ведет к нарушению работы ферментов и является при­чиной тяжелых заболеваний — авитаминозов. Например, не­достаток витамина С является причиной тяжелого заболева­ния — цинги, при недостатке витамина D развивается рахит у детей.

Не нашли то, что искали? Воспользуйтесь поиском гугл на сайте:

Источник