В каком органоиде клетки содержатся хромосомы
Хромосомы – структуры клетки, хранящие и передающие наследственную информацию = ДНК(7) + белок (6).
Строение хромосомы лучше всего видно в метафазе митоза. Она представляет собой палочковидную структуру и состоит из двух сестринских хроматид (3), удерживаемых центромерой (кинетохором) в области первичной перетяжки (1), которая делит хромосому на 2 плеча (2). Иногда бывает вторичная перетяжка (4), в результате которой образуется спутник хромосомы (5).
Отдельные участки молекулы ДНК — гены — ответственны за каждый конкретный признак или свойство организма. Наследственная информация из клетки в клетку передается путем удвоения молекулы ДНК (репликации), транскрипции и трансляции. Главная функция хромосом — хранение и передача наследственной информации, носителем которой является молекула ДНК.
Под микроскопом видно, что хромосомы имеют поперечные полосы, которые чередуются в различных хромосомах по-разному. Распознают пары хромосом, учитывая распределение, светлых и темных полос (чередование АТ и ГЦ – пар). Поперечной исчерченностью обладают хромосомы представителей разных видов. У родственных видов, например у человека и шимпанзе, сходный характер чередования полос в хромосомах.
Во всех соматических клетках любого растительного или животного организма число хромосом одинаково. Половые клетки(гаметы) всегда содержат вдвое меньше хромосом, чем соматические клетки данного вида организмов.
В кариотипе человека 46 хромосом – 44 аутосомы и 2 половые хромосомы. Мужчины гетерогаметны (половые хромосомы ХУ), а женщины гомогаметны (половые хромосомы XX). У-хромосома отличается от Х-хромосомы отсутствием некоторых аллелей. Хромосомы одной пары называются гомологичными, они в одинаковых локусах (местах расположения) несут аллельные гены.
У всех организмов, относящихся к одному виду, число хромосом в клетках одинаково. Число хромосом не является видоспецифическим признаком. Однако хромосомный набор в целом видоспецифичен, т. е. свойствен только одному какому-то виду организмов растений или животных.
Кариотип — совокупность внешних количественных и качественных признаков хромосомного набора (число, форма, размер хромосом) соматической клетки, характерных для данного вида
Деление клеток — биологический процесс, лежащий в основе размножения и индивидуального развития всех живых организмов, процесс увеличения числа клеток путем деления исходной клетки.
Способы деления клеток:
1. амитоз — прямое (простое) деление интерфазного ядра путем перетяжки, которое происходит вне митотического цикла, т. е. не сопровождается сложной перестройкой всей клетки, а также спирализацией хромосом. Амитоз может сопровождаться делением клетки, а может ограничиваться лишь делением ядра без разделения цитоплазмы, что приводит к образованию дву- и многоядерных клеток. Клетка, претерпевшая амитоз, в дальнейшем не способна вступить в нормальный митотический цикл. По сравнению с митозом амитоз встречается довольно редко. В норме он наблюдается в высокоспециализированных тканях, клетках, которым предстоит делиться: в эпителии и печени позвоночных, зародышевых оболочках млекопитающих, клетках эндосперма семян растений. Амитоз наблюдается также при необходимости быстрого восстановления тканей (после операций и травм). Амитозом также часто делятся клетки злокачественных опухолей.
2. митоз — непрямое деление, при котором исходно диплоидная клетка дает две дочерние, также диплоидные клетки; характерен для соматических клеток (клеток тела) всех эукариот (растений и животных); универсальный тип деления.
3. мейоз — осуществляется при образовании половых клеток у животных и спор у растений.
Жизненный цикл клетки (клеточный цикл) – время существования клетки от деления до следующего деления, или от деления до смерти. Для разных типов клеток клеточный цикл различен.
В организме млекопитающих и человека различают следующие три группы клеток, локализующиеся в разных тканях и органах:
часто делящиеся клетки (малодифференцированные клетки эпителия кишечника, базальные клетки эпидермиса и другие);
редко делящиеся клетки (клетки печени – гепатоциты);
неделящиеся клетки (нервные клетки центральной нервной системы, меланоциты и другие).
Жизненный цикл у часто делящихся клеток – это время их существования от начала деления до следующего деления. Жизненный цикл таких клеток нередко называют митотическим циклом. Такой клеточный цикл подразделяется на два основных периода:
митоз или период деления;
интерфаза – промежуток жизни клетки между двумя делениями.
Интерфаза – период между двумя делениями, когда клетка готовится к делению: удваивается количество ДНК в хромосомах, количество других органоидов, синтезируются белки, происходит рост клетки.
К концу интерфазы каждая хромосома состоит из двух хроматид, которые в процессе митоза станут самостоятельными хромосомами.
Периоды интерфазы:
1. Пресинтетический период (G1) — период подготовки к синтезу ДНК после завершения митоза. Происходит образование РНК, белков, ферментов синтеза ДНК, увеличивается количество органоидов. Содержание хромосом (п) и ДНК (с) равно 2п2с.
2. Синтетический период (S-фаза). Происходит репликация (удвоение, синтез ДНК). В результате работы ДНК-полимераз для каждой из хромосом хромосомный набор становится 2п4с. Так образуются двухроматидные хромосомы.
3. Постсинтетический период (G2) — время от окончания синтеза ДНК до начала митоза. Завершается подготовка клетки к митозу, удваиваются центриоли, синтезируются белки, завершается рост клетки.
Митоз –
это форма деления клеточного ядра, происходит он только в эукариотических клетках. В результате митоза каждое из образующихся дочерних ядер получает тот же набор генов, который имела родительская клетка. В митоз могут вступать как диплоидные, так и гаплоидные ядра. При митозе получаются ядра той же плоидности, что и исходное.
Открыт с помощью светового микроскопа в 1874 г. русским ученым И. Д. Чистяковым в растительных клетках.
В 1878 г. В. Флеммингом и русским ученым П. П. Перемежко этот процесс обнаружен в животных клетках. У животных клеток митоз длится 30-60 мин, у растительных — 2-3 ч.
Митоз состоит из четырех фаз:
1.профаза — двухроматидные хромосомы спирализуются и становятся заметными, ядрышко и ядерная оболочка распадаются, образуются нити веретена деления. Клеточный центр делится на две центриоли, расходящиеся к полюсам. (2n4c)
2. метафаза — фаза скопления хромосом на экваторе клетки: нити веретена деления идут от полюсов и присоединяются к центромерам хромосом: к каждой хромосоме подходят две нити, идущие от двух полюсов. (2n4c)
3. анафаза — фаза расхождения хромосом, в которой центромеры делятся, а однохроматидные хромосомы растягиваются нитями веретена деления к полюсам клетки; самая короткая фаза митоза. (4n4c)
4. телофаза — окончание деления, движение хромосом заканчивается, и происходит их деспирализация (раскручивание в тонкие нити), формируется ядрышко, восстанавливается ядерная оболочка, на экваторе закладывается перегородка (у растительных клеток) или перетяжка (у животных клеток), нити веретена деления растворяются. (2n2c)
Цитокинез – процесс разделения цитоплазмы. Клеточная мембрана в центральной части клетки втягивается внутрь. Образуется борозда деления, по мере углубления которой клетка раздваивается.
В результате митоза образуются два новых ядра с идентичными наборами хромосом, точно копирующими генетическую информацию материнского ядра.
В опухолевых клетках ход митоза нарушается.
В результате митоза из одной диплоидной клетки, имеющей двухроматидные хромосомы и удвоенное количество ДНК (2n4с), образуются две дочерние диплоидные клетки с однохроматидными хромосомами и одинарным количеством ДНК (2n2с), которые затем вступают интерфазу. Так образуются соматические клетки (клетки тела) организма растения, животного или человека.
Мейоз –
это процесс деления клеточных ядер, приводящий к уменьшению числа хромосом вдвое и образованию гамет, при этом происходит обмен гомологичными участками парных (гомологичных) хромосом, а, следовательно, и ДНК, прежде чем они разойдутся в дочерние клетки.
В результате мейоза из одной диплоидной клетки (2n) образуется четыре гаплоидные клетки (n).
Открыт в 1882 г. В. Флеммингом у животных, в 1888 г. Э. Страсбургером у растений.
Мейозу предшествует интерфаза, поэтому вступают в мейоз хромосомы двухроматидные (2n4с).
Мейоз проходит в два этапа:
1. редукционное деление — наиболее сложный и важный процесс. Он подразделяется на фазы:
А) профаза I: парные хромосомы диплоидной клетки подходят друг к другу, перекрещиваются, образуя мостики (хиазмы), затем обмениваются участками (кроссинговер), при этом осуществляется перекомбинация генов, после чего хромосомы расходятся
Б) в метафазе I эти парные хромосомы располагаются по экватору клетки, к каждой из них присоединяется нить веретена деления: к одной хромосоме от одного полюса, ко второй — от другого
В) в анафазе I к полюсам клетки расходятся двухроматидные хромосомы; одна из каждой пары к одному полюсу, вторая — к другому. При этом число хромосом у полюсов становится вдвое меньше, чем в материнской клетке, но они остаются двухроматидными (n2с)
Г) затем проходит телофаза I, которая сразу же переходит в профазу II второго этапа деления мейоза, идущего по типу митоза:
2. эквационное деление. Интерфазы в данном случае нет, так как хромосомы двухроматидные, молекулы ДНК удвоены.
А) профазаII
Б) в метафазе II двухроматидные хромосомы располагаются по экватору, при этом деление происходит сразу в двух дочерних клетках
В) в анафазе II к полюсам отходят уже однохроматидные хромосомы
Г) в телофазе II в четырех дочерних клетках формируются ядра и перегородки между клетками.
Таким образом, в результате мейоза получаются четыре гаплоидные клетки с однохроматидными хромосомами (nc): это либо половые клетки (гаметы) животных, либо споры растений.
Биологическое значение мейоза заключается в том, что уменьшение числа хромосом необходимо при образовании половых клеток, поскольку при оплодотворении ядра гамет сливаются.
Если бы указанной редукции не происходило, то в зиготе (следовательно, и во всех клетках дочернего организма) хромосом становилось бы вдвое больше.
Однако это противоречит правилу постоянства числа хромосом.
Развитие половых клеток.
Процесс формирования половых клеток называется гаметогенезом. У многоклеточных организмов различают сперматогенез – формирование мужских половых клеток и овогенез – формирование женских половых клеток.
Рассмотрим гаметогенез, происходящий в половых железах животных – семенниках и яичниках.
Сперматогенез – процесс превращения диплоидных предшественников половых клеток – сперматогониев в сперматозоиды.
1. Сперматогонии делятся митозом на две дочерние клетки – сперматоциты первого порядка.
2. Сперматоциты первого порядка делятся мейозом (1-е деление) на две дочерние клетки – сперматоциты второго порядка.
3. Сперматоциты второго порядка приступают ко второму мейотическому делению, в результате которого образуются 4 гаплоидные сперматиды.
4. Сперматиды после дифференцировки превращаются в зрелые сперматозоиды.
Сперматозоид состоит из головки, шейки и хвоста. Он подвижен и благодаря этому вероятность встречи его с гаметами увеличивается.
У мхов и папоротников спермии развиваются в антеридиях, у покрытосеменных растений они образуются в пыльцевых трубках.
Овогенез – образование яйцеклеток у особей женского пола. У животных он происходит в яичниках. В зоне размножения находятся овогонии – первичные половые клетки, размножающиеся митозом.
Из овогониев после первого мейотического деления образуются овоциты первого порядка.
После второго мейотического деления образуются овоциты второго порядка, из которых формируется одна яйцеклетка и три направительных тельца, которые затем гибнут. Яйцеклетки неподвижны, имеют шаровидную форму. Они крупнее других клеток и содержат запас питательных веществ для развития зародыша.
У мхов и папоротников яйцеклетки развиваются в архегониях, у цветковых растений – в семяпочках, локализованных в завязи цветка.
Развитие половых клеток и двойное оплодотворение у цветковых растений.
Схема жизненного цикла цветкового растения.
Взрослая особь диплоидна. В жизненном цикле преобладает спорофит (С > Г).
Взрослое растение здесь является спорофитом, образующим макро (женские) и микроспоры (мужские), которые развиваются соответственно в зародышевый мешок и зрелое пыльцевое зерно, являющиеся гаметофитами.
Женский гаметофит у растений – зародышевый мешок.
Мужской гаметофит у растений – пыльцевое зерно.
Чашечка + венчик = ОКОЛОЦВЕТНИК
Тычинка и пестик – репродуктивные органы цветка
Мужские половые клетки созревают в пыльнике (пыльцевом мешке или микроспорангии), расположенном на тычинке.
В нем содержится множество диплоидных клеток, каждая из которых делится путем мейоза и образует 4 гаплоидных пыльцевых зерна (микроспоры), из всех них затем развивается мужской гаметофит.
Каждое пыльцевое зерно делится путем митоза и образует 2 клетки — вегетативную и генеративную. Генеративная клеткаеще раз делится путем митоза и образует 2 спермия.
Таким образом, пыльца (проросшая микроспора, созревшее пыльцевое зерно) содержит три клетки — 1 вегетативную и 2 спермия, покрытых оболочкой.
Женские половые клетки развиваются в семязачатке (семяпочке или мегаспорангии), располагающемся в завязи пестика.
Одна из ее диплоидных клеток делится путем мейоза и образует 4 гаплоидных клетки. Из них только одна гаплоидная клетка (мегаспора) трижды делится путем митоза и прорастает в зародышевый мешок (женский гаметофит),
три другие гаплоидные клетки отмирают.
В результате деления мегаспоры образуются 8 гаплоидных ядер зародышевого мешка, в котором 4 ядра располагаются на одном полюсе, а 4— на противоположном.
Затем от каждого полюса в центр зародышевого мешка мигрирует по одному ядру, сливаясь, они образуют центральное диплоидное ядро зародышевого мешка.
Одна из трех гаплоидных клеток, расположенных у пыльцевхода, является крупной яйцеклеткой, 2 другие — вспомогательные клетки-синергиды.
Опыление — перенос пыльцы с пыльников на рыльце пестика.
Оплодотворение — это процесс слияния яйцеклетки и сперматозоида, в результате чего образуется зигота – зародышевая клетка или первая клетка нового организма
При оплодотворении пыльцевое зерно, попав на рыльце пестика, прорастает по направлению к семязачаткам, расположенным в завязи, за счет своей вегетативной клетки, образующей пыльцевую трубку. На переднем конце пыльцевой трубки находятся 2 спермия (спермии сами двигаться не могут, поэтому продвигаются за счет роста пыльцевой трубки). Проникая в зародышевый мешок через канал в покровах — пыльцевход (микропиле), один спермий оплодотворяет яйцеклетку, а второй сливается с 2nцентральной клеткой (диплоидным ядром зародышевого мешка) с образованием 3n триплоидного ядра. Этот процесс получил название двойного оплодотворения, был открыт С.Г. Навашиным в 1898 г. у лилейных. В дальнейшем из оплодотворенной яйцеклетки — зиготы развивается зародыш семени, а из триплоидного ядра — питательная ткань — эндосперм. Так, из семязачатка образуется семя, а из его покровов — семенная кожура. Вокруг семени из завязи и других частей цветка формируется плод.
Источник
Строение растительной клетки : целлюлозная оболочка, мембрана, цитоплазма с органоидами, ядро, вакуоли с клеточным соком.
Наличие пластид — главная особенность растительной клетки.
Функции клеточной оболочки — определяет форму клетки, защищает от факторов внешней среды.
Плазматическая мембрана — тонкая пленка, состоит из взаимодействующих молекул липидов и белков, отграничивает внутреннее содержимое от внешней среды, обеспечивает транспорт в клетку воды, минеральных и органических веществ путем осмоса и активного переноса, а также удаляет продукты жизнедеятельности.
Цитоплазма — внутренняя полужидкая среда клетки, в которой расположено ядро и органоиды, обеспечивает связи между ними, участвует в основных процессах жизнедеятельности.
Эндоплазматическая сеть — сеть ветвящихся каналов в цитоплазме. Она участвует в синтезе белков, липидов и углеводов, в транспорте веществ. Рибосомы — тельца, расположенные на ЭПС или в цитоплазме, состоят из РНК и белка, участвуют в синтезе белка. ЭПС и рибосомы — единый аппарат синтеза и транспорта белков.
Митохондрии — органоиды, отграниченные от цитоплазмы двумя мембранами. В них окисляются органические вещества и синтезируются молекулы АТФ с участием ферментов. Увеличение поверхности внутренней мембраны, на которой расположены ферменты за счет крист. АТФ — богатое энергией органическое вещество.
Пластиды (хлоропласты, лейкопласты, хромопласты), их содержание в клетке — главная особенность растительного организма. Хлоропласты — пластиды, содержащие зеленый пигмент хлорофилл, который поглощает энергию света и использует ее на синтез органических веществ из углекислого газа и воды. Отграничение хлоропластов от цитоплазмы двумя мембранами, многочисленные выросты — граны на внутренней мембране, в которых расположены молекулы хлорофилла и ферменты .
Комплекс Гольджи — система полостей, отграниченных от цитоплазмы мембраной. Накапливание в них белков, жиров и углеводов. Осуществление на мембранах синтеза жиров и углеводов.
Лизосомы — тельца, отграниченные от цитоплазмы одной мембраной. Содержащиеся в них ферменты ускоряют реакцию расщепления сложных молекул до простых: белков до аминокислот, сложных углеводов до простых, липидов до глицерина и жирных кислот, а также разрушают отмершие части клетки, целые клетки.
Вакуоли — полости в цитоплазме, заполненные клеточным соком, место накопления запасных питательных веществ, вредных веществ; они регулируют содержание воды в клетке.
Ядро — главная часть клетки, покрытая снаружи двух мембранной, пронизанной порами ядерной оболочкой. Вещества поступают в ядро и удаляются из него через поры. Хромосомы — носители наследственной информации о признаках организма, основные структуры ядра, каждая из которых состоит из одной молекулы ДНК в соединении с белками. Ядро — место синтеза ДНК, и-РНК, р-РНК.
Строение животной клетки
Наличие наружной мембраны, цитоплазмы с органоидами, ядра с хромосомами.
Наружная, или плазматическая, мембрана — отграничивает содержимое клетки от окружающей среды (других клеток, межклеточного вещества), состоит из молекул липидов и белка, обеспечивает связь между клетками, транспорт веществ в клетку (пиноцитоз, фагоцитоз) и из клетки.
Цитоплазма — внутренняя полужидкая среда клетки, которая обеспечивает связь между расположенными в ней ядром и органоидами. В цитоплазме протекают основные процессы жизнедеятельности.
Органоиды клетки :
1) эндоплазматическая сеть (ЭПС) — система ветвящихся канальцев, участвует в синтезе белков, липидов и углеводов, в транспорте веществ в клетке;
2) рибосомы — тельца, содержащие рРНК, расположены на ЭПС и в цитоплазме, участвуют в синтезе белка. ЭПС и рибосомы — единый аппарат синтеза и транспорта белка;
3) митохондрии — «силовые станции» клетки, отграничены от цитоплазмы двумя мембранами. Внутренняя образует кристы (складки), увеличивающие ее поверхность. Ферменты на кристах ускоряют реакции окисления органических веществ и синтеза молекул АТФ, богатых энергией;
4) комплекс Гольджи — группа полостей, отграниченных мембраной от цитоплазмы, заполненных белками, жирами и углеводами, которые либо используются в процессах жизнедеятельности, либо удаляются из клетки. На мембранах комплекса осуществляется синтез жиров и углеводов;
5) лизосомы — тельца, заполненные ферментами, ускоряют реакции расщепления белков до аминокислот, липидов до глицерина и жирных -.кислот, полисахаридов до моносахаридов. В лизосомах разрушаются отмершие части клетки, целые и клетки.
Клеточные включения — скопления запасных питательных веществ: белков, жиров и углеводов.
Ядро — наиболее важная часть клетки. Оно покрыто двухмембранной оболочкой с порами, через которые одни вещества проникают в ядро, а Другие поступают в цитоплазму. Хромосомы — основные структуры ядра, носители наследственной информации о признаках организма. Она передается в процессе деления материнской клетки дочерним клеткам, а с половыми клетками — дочерним организмам. Ядро — место синтеза ДНК, иРНК, рРНК.
Задание:
Поясните, почему органоиды называют специализированными структурами клетки?
Ответ: органоиды называют специализированными структурами клетки, так как они выполняют строго определенные функции, в ядре хранится наследственная информация, в митохондриях синтезируется АТФ, в хлоропластах протекает фотосинтез и т.д.
Если у Вас есть вопросы по цитологии, то Вы можете обратиться за помощью к репетитору по биологии, он проконсультирует Вас в режиме онлайн.
Источник