В каком органоиде клеток содержатся нуклеиновые кислоты

В каком органоиде клеток содержатся нуклеиновые кислоты thumbnail

Для стабильной работы клетки нужно, чтобы в ней постоянно продуцировалось большое количество разнообразных белков. Информация о белках хранится в клетке, даже о тех из них, которые данный организм не унаследовал. «Банком сведений» являются нуклеиновые кислоты, их можно сравнить с дисками наших компьютеров, на которые мы складываем всё, что нужно запомнить. Все живые организмы способны сберегать наследственную информацию и передавать её потомкам при помощи нуклеиновых кислот.

Впервые нуклеиновые кислоты были открыты швейцарским биохимиком Ф. Мишером в 1868 г. Он выделил их из сперматозоидов лосося и ядер лейкоцитов человека. От слова «ядро» (лат. nucleus) и произошло название «нуклеиновые кислоты». Позже они были обнаружены вне ядер и в клетках всех живых организмов, в том числе безъядерных, но название так и сохранилось.

Фридрих Мишер открыл нуклеиновые кислоты, фотоФридрих Мишер

Существует две разновидности нуклеиновых кислот: ДНК (дезоксирибонуклеиновая кислота), которые обеспечивают сохранение информации и РНК (рибонуклеиновая кислота), принимающие участие в процессе генной эксперессии и биосинтеза белка.

Нуклеиновые кислоты обладают уникальным свойством, они способны служить шаблоном для получения точной копии самих себя. Именно это позволяет передавать генетическую информацию в процессе деления клеток во время размножения организмов.

Удвоение ДНК фотоРепликация ДНК

Нуклеиновые кислоты – полимерные молекулы

Нуклеиновые кислоты — самые крупные нерегулярные полимерные органические молекулы, носящие название полинуклеотидов. Обычно ДНК намного крупнее РНК. Их мономерами являются нуклеотиды (нуклеозиды, дезоксинуклеозиды и др.). Каждый из них состоит из трёх компонентов:

  • пентозы, или пятиуглеродного сахара (рибоза в РНК и дезоксирибоза в ДНК);
  • фосфатной группы – остатка фосфорной кислоты (—PO 4 -);
  • азотистого основания.

Общее строение нуклеотида фотоСтроение нуклеотида

Азотистые основания — это ароматические гетероциклические соединения, производные пиримидина или пурина. Нуклеотиды имеют пять основных типов азотистых оснований. Двухкольцевые пуриновые: аденин (Аde) и гуанин (Gua). Каждое из них содержится как в ДНК, так и в РНК. Остальные три основания представляют собой однокольцовые молекулы, производные пиримидина: цитозин (Cyt — есть как в ДНК, так и в РНК), тимин (Thy — только в ДНК), урацил (Ura — только в РНК).

Аденин и рибоза образуют нуклеозид аденозин (A), производные других азотистых оснований носят названия: гуанозин (G, Г), уридин (U, У), тимидин (Т), цитидин (C, Ц). При соединении азотистых оснований с дезоксирибозой образуются дезоксинуклеозиды. Все нуклеозидфосфаты объединяют под общим названием — нуклеотиды.

Пуриновые азотистые основания фотоСтроение пурина и пуриновых азотистых основанийПиримидиновые азотистые основания фотоСтроение пиримидина и пиримидиновых азотистых оснований

Нуклеиновые кислоты образуются путём реакции обезвоживания (конденсации, или дегидрации) между фосфатной группой одного нуклеотида и гидроксильной группой пентозы другого нуклеотида. Так получается фосфодиэфирная связь, объединяющая два углевода через фосфат.

В молекуле нуклеотида азотистое основание присоединено к первому атому углерода пентозы, а остаток фосфорной кислоты — к пятому. Получающаяся полинуклеотидная цепь полярна, она имеет два конца:

  • 5′ (пять-штрих положение) — углеродный атом в пятичленном моносахариде — рибозе или дезоксирибозе;
  • 3´ (три-штрих положение) — гидроксильная группа, взятая от углевода (ОН).

Эти концы в двойной спирали ДНК соединяются через фосфатную группу по типу голова-хвост (3′ к 5′) по принципу комплементарности, азотистыми основаниями внутрь спирали. Такая ориентация цепей называется антипараллельной.

ДНК – хранитель генетической информации

Организмы используют расстановку нуклеотидов ДНК для кодирования информации, указывающей аминокислотную последовательность первичной структуры их белков. Этот способ похож на то, как мы кодируем слова в предложении при помощи букв.

Предложение, написанное на русском языке, состоит из комбинации 33 букв алфавита в определённом порядке; код молекулы ДНК состоит из комбинации четырёх типов нуклеотидов в специфической последовательности: А, T, Г, Ц.

ДНК в организмах содержится в виде двух цепей, обёрнутых в виде спирали вокруг друг друга и вместе вокруг общей оси, либо в линейной форме, либо кольцевой у большинства прокариот, а также в хлоропластах и митохондриях эукариот. Исключение – одноцепочечная молекула ДНК некоторых фагов — вирусов, поражающих бактериальные клетки. Две нити ДНК соединены связями-перемычками, как винтовая лестница ступенями. Такая структура молекулы называется двойной спиралью. Каждый шаг винтовой лестницы ДНК состоит из пары оснований. Основание одной цепи притягивается водородной связью к основанию другой цепи.

Строение ДНК фотоСтроение ДНК

Правила спаривания возникают из наиболее стабильной конфигурации водородного скрепления между двумя основаниями: пары аденина с тимином двумя водородными связями (в ДНК) или с урацилом (в РНК) и пары цитозина с гуанином — тремя водородными связями.

Основания, которые участвуют в сопряжении, дополняют друг друга, это свойство носит название комплементарности. Если известна последовательность оснований одной цепи ДНК, то благодаря специфичности их соединения, становится известна структура её партнёра — второй цепи.

Схема строения ДНК фотоСхема строения ДНК

В клетках эукариот ДНК дополнительно комплектуется с белками для формирования структур, называемых хромосомами. Это структуры более высокого порядка, которые влияют на функцию ДНК, поскольку участвуют в контроле за экспрессией генов.

Определение размеров молекул ДНК стало возможным только после изобретения методов электронной микроскопии, ультрацентрифугирования, электрофореза.

ДНК и хромосомы фото

Расшифровка структуры ДНК имеет свою предысторию. В 1950 г. американский ученый Э. Чаргафф и его коллеги, исследуя состав молекулы ДНК, установили следующие закономерности, впоследствии названные правилами Чаргаффа.

  1. Количество адениловых нуклеотидов в молекуле ДНК равно количеству тимидиловых (А = Т), а количество гуаниловых — количеству цитидиловых (Г = Ц).
  2. Количество пуриновых азотистых оснований равно количеству пиримидиновых (А + Г = Т + Ц).
  3. Суммарное количество адениловых и цитидиловых нуклеотидов равно суммарному количеству тимидиловых и гуаниловых нуклеотидов (А + Ц = Т + Г), что следует из первого правила.

Это открытие способствовало установлению пространственной структуры ДНК и определению ее роли в передаче наследственной информации от одного поколения другому. В 1953 г. на основании правил Чаргаффа и данных о пространственной структуре молекулы ДНК, полученных английским биофизиком М. Уилкинсом, американский ученый Дж. Уотсон и англичанин Ф. Крик предложили трехмерную модель структуры ДНК, которая получила название «двойной спирали». За разработку модели молекулы ДНК Дж. Уотсон, Ф. Крик и М. Уилкинс в 1962 г. были удостоены Нобелевской премии.

Нуклеиновые кислоты: двойная спираль ДНК фотоПараметры двойной спирали ДНК

Роли РНК в клетке

Рибонуклетновые кислоты подобны ДНК, но имеет несколько основных химических различий.

  • Она содержит дисахарид рибозу, связанный с гидроксильной группой (в ДНК гидроксильную группу заменяет атом водорода);
  • В молекуле РНК используется урацил вместо тимина. Урацил имеет сходную с тимином структуру, за исключением того, что один из его углеродов не имеет метильной группы (- CH3 ).
  • РНК производится путём транскрипции с участка ДНК, не образует двойной спирали, но содержит короткие участки со спаренными основаниями. Это приводит к тому, что при двумерном изображении она напоминает шпильки и петли, форму кленового листа (у тРНК).
Читайте также:  Амоксициллин в каких лекарствах содержится

Рибонуклеиновые кислоты фото

Все виды РНК синтезируются на определенных участках одной из цепей ДНК. Такой синтез получил название матричного, так как молекула ДНК является матрицей (т. е. образцом, моделью) для синтеза молекул РНК.

Роль РНК в клетке разнообразна:

  • она несёт информацию в виде матричной, или информационной РНК (мРНК, или иРНК). Матричные РНК наиболее разнообразны по структуре и размерам. Одна молекула содержит информацию об одном белке. В ходе синтеза белка на рибосомах она служит матрицей, поэтому биосинтез белка относится к матричным процессам. Содержание иРНК составляет 3-5% всех РНК клетки;
  • входит в состав рибосомы в форме рибосомальной РНК (рРНК). рРНК составляет 80% всех РНК клетки. В соединении с белками они образуют одномембранные органоиды рибосомы, и участвуют в синтезе белков из аминокислот;
  • переносит аминокислоты в виде трансферной, или транспортной РНК (тРНК) составляет около 15 % всех клеточных РНК. Молекулы тРНК сравнительно небольшие (в среднем состоят из 80 нуклеотидов). Благодаря формированию внутримолекулярных водородных связей молекула тРНК приобретает характерную пространственную структуру, называемую клеверным листом.

В последнее время у РНК были обнаружены ферментативные функции, а отдельная её форма включает регуляцию экспрессии генов.

Нуклеиновые кислоты: строение РНК фото

Другие нуклеотиды

В дополнение к служению мономерами в ДНК и РНК нуклеотиды играют важные роли в жизни клетки. Они являются основой для синтеза целого ряда органических веществ. Два нуклеотида могут быть связаны через фосфатные группировки в динуклеотид. К этой группе соединений относятся коферменты:

  • НАДФ+ (NADP+);
  • КоА (CoA);
  • флавин ФАД (FAD).

Также есть жизненно-важные нуклеотиды, являющиеся компонентами энергетических реакций. Например, аденин является ключевым компонентом молекулы аденозинтрифосфата (АТФ), энергетической валюты клетки. Клетки используют АТФ в качестве источника энергии во всех процессах: чтобы перенести вещества через мембрану, соединить или расщепить молекулы, передвигать мышцами, жгутиками и ресничками и т. д. АТФ – это универсальный (для всех живых организмов) источник и переносчик энергии клетки.

Аденозинтрифосфорная кислота фотоСтруктура аденозинтрифосфорной кислоты
Автор: Solon

Молекула АТФ состоит из азотистого основания аденина, пятиуглеродного сахара рибозы и трех остатков фосфорной кислоты. Остатки фосфорных кислот соединены между собой высокоэнергетическими связями (макроэргическими). Отрыв остатка фосфорной кислоты происходит в процессе гидролиза, при этом выделяется большое количество энергии – 40 кДж/моль. Процесс отсоединения фосфатной группы называется реакцией дефосфорелирования.

После гидролитического отщепления от АТФ одной фосфатной группы образуется аденизиндифосфатная кислота (АДФ):

АТФ + Н2О → АДФ + Н3РО4 + 40 кДж

АДФ может подвергаться дальнейшему гидролизу с отщеплением еще одной фосфатной группы и выделением второй «порции» энергии. При этом АДФ преобразуется в аденозинмонофосфорную кислоту (АМФ):

АДФ + Н2О → АМФ + Н3РО4 + 40 кДж

Обратный процесс — синтез АТФ — происходит в результате присоединения к молекуле АДФ остатка фосфорной кислоты (реакция фосфорилирования). Этот процесс осуществляется за счет энергии, высвобождающейся при окислении органических веществ (глюкозы, высших карбоновых кислот и др.). Для образования 1 моль АТФ из АДФ должно быть затрачено не менее 40 кДж энергии:

АДФ + Н3РО4 + 40 кДж → АТФ + Н2О.

АТФ чрезвычайно быстро обновляется. У человека, например, каждая молекула АТФ расщепляется и вновь синтезируется около 2400 раз в сутки, поэтому средняя продолжительность ее «жизни» — менее 1 мин. Синтез АТФ осуществляется главным образом в митохондриях и хлоропластах, частично в гиалоплазме.

Нуклеиновые кислоты: решение задач

Задача 1.

В молекуле ДНК содержится 17% аденина. Определите, сколько (в %) в этой молекуле содержится других оснований.

Решение:

По первому правилу Чаргаффа А=Т, Г=Ц. В задаче дано А=17%, значит и тимина 17%. Всего тимина и аденина 17+17=34%. Оставшиеся 66% делятся на гуанин и цитидин поровну. Г=33% и Ц=33%.

Ответ: в этой молекуле ДНК содержится:

Тимидина — 17%;

Гуанина — 33%;

Цитидина — 33%.

Задача 2.

Участок гена имеет следующее строение, состоящее из последовательности нуклеотидов: ЦГГ ЦГЦ ТЦА ААА ТЦГ …

Укажите строение соответствующего участка белка, информация о котором содержится в данном гене. Как отразится на строении белка удаление из гена четвёртого нуклеотида?

Генетический код фотоГенетический код

Решение:

Используя принцип комплементарности (в ДНК: А=Т, Г=Ц) соединения оснований водородными связями и таблицу генетического кода:

Цепь ДНКЦГГЦГЦТЦААААТЦГ
иРНКГЦЦГЦГУГУУУУАГЦ
Цепь белка из аминркислотАлаАлаСерФенСер

При удалении из гена четвёртого нуклеотида – Ц, произойдут заметные изменения – уменьшится количество и состав аминокислот в белке.

ДНКЦГГГЦТЦААААТЦГ
иРНКГЦЦЦГАГУУУУАГЦ
белокАлаАргВалЛей

Задача 3.

Какую длину имеет участок ДНК, кодирующий синтез инсулина, который содержит 51 аминокислоту в двух цепях, если один нуклеотид занимает 3,4 А° (ангстрема) цепи ДНК? 1 А°=0,1 нм (нанометра)=0,0001 мкм (микрометра)=0,000 0001 мм=0,000 000 000 01 м.

Решение

1) 51Х3=153 (нуклеотида) – так как каждая аминокислота кодируется тремя нуклеотидами.

2) 153 Х3,4 = 520,2 (А°)

Ответ: участок ДНК равен 520,2 А°

Подготовка к ЕГЭ, решение задач

Источник

Какие органоиды клетки имеют собственную ДНК

Органоиды, имеющие собственную ДНК: митохондрии и хлоропласты.

Митохондрии

Митохондрия образована двумя мембранами — внешнейи внутренней, между которыми расположено межмембранное пространство.

Внутренняя мембрана образует множество впячиваний — крист, представляющих собой либо пластины, либо трубочки. Такая ее организация обеспечивает огромную площадь внутренней мембраны.

На ней располагаются ферменты, обеспечивающие преобразование энергии, заключенной в органических веществах (углеводах, липидах), в энергию АТФ, необходимую для жизнедеятельности клетки.

Следовательно, функция митохондрий — участие в энергетических клеточных процессах. Именно поэтому большое количество митохондрий присуще, например, мышечным клеткам, выполняющим большую работу.

Хлоропласты

Хлоропласты — пластиды высших растений, в которых идет процесс фотосинтеза, т. е. использование энергии световых лучей для образования из неорганических веществ (углекислого газа и воды) органических веществ с одновременным выделением в атмосферу кислорода. Хлоропласты имеют форму двояковыпуклой линзы, размер их около 4-6 мкм. Находятся они в паренхимных клетках листьев и других зеленых частей высших растений. Число их в клетке варьирует в пределах 25-50.

Читайте также:  Какие полезные вещества содержатся в кефире

Снаружи хлоропласт покрыт оболочкой, состоящей из двух липопротеиновых мембран, внешней и внутренней. Обе мембраны имеют толщину около 7нм, они отделены друг от друга межмембранным пространством. Внутренняя мембрана хлоропластов, как и других пластид образует складчатые впячивания внутрь матрикса или стромы. В зрелом хлоропласте высших растений видны два типа внутренних мембран. Это — мембраны, образующие плоские, протяженные стромы, и мембраны тилакоидов, плоских дисковидных вакуолей или мешков.

Связь внутренней мембраны хлоропласта с мембранными структурами внутри него хорошо прослеживается на примере мембран стромы. В этом случае внутренняя мембрана хлоропласта образует узкую (шириной около 20нм.) складку, которая может простираться почти через всю пластиду. Таким образом, строма может представлять собой плоский полый мешок или же иметь вид сети из разветвленных и связанных друг с другом каналов, располагающихся в одной плоскости. Обычно стромы внутри хлоропласта лежат параллельно и не образуют связей между собой.

Кроме мембран стромы в хлоропластах обнаруживаются мембранные тилакоиды. Это плоские замкнутые мембранные мешки, имеющие форму диска. Величина межмембранного пространства у них также около 20-30нм. Такие тилакоиды образуют стопки наподобие столбика монет, называемые гранами. Число тилакоидов на одну грану варьирует: от нескольких штук до 50 и более.

Размер таких стопок может достигать 0,5 мкм, поэтому граны видны в некоторых объектах в световом микроскопе. Количество гран в хлоропластах высших растений может достигать 40-60. Тилакоиды в гране сближены друг с другом так, что внешние слои их мембран тесно соединяются; в месте соединения мембран тилакоидов образуется плотный слой толщиной около 2нм. В матриксе ( строме) хлоропластов обнаруживаются молекулы ДНК, рибосомы; там же происходит первичное отложение запасного полисахарида, крахмала, в виде крахмальных зерен.

Нуклеиновые кислоты

В соответствии с современными представлениями генетическим материалом являются нуклеиновые кислоты.

Нуклеиновые кислоты были обнаружены в ядрах клеток в 1869 ᴦ. швейцарским физиологом Фридрихом Мишером. Это открытие является настолько важным, что оно заслуживает приведения здесь цитаты из работы Ф. Мишера, в которой он описывал свои опыты, а именно: ʼʼОбрабатывая клетки гноя слабыми щелочными растворами, я получил в результате нейтрализации раствора осадок, который не растворялся ни в воде, ни в уксусной кислоте, ни в разведенной соляной кислоте, ни в обычном солевом растворе и который не мог принадлежать ни к одному из белков, известных в настоящее времяʼʼ.

Обнаруженное вещество Ф. Мишер назвал ʼʼнуклеиномʼʼ. Как считают, он не мог знать, что открыл ДНК и что оказался в начале исследований ДНК. Но, определяя заслуги Ф. Мишера в качестве первооткрывателя нуклеиновых кислот, нельзя не отметить, что первое предположение о роли нуклеиновых кислот в качестве генетического материала было сформулировано в 1914 ᴦ. доцентом Петербургского университета А.Щепотьевым.

Материалом, из которого состоят гены, является дезоксирибо-нуклеиновая кислота (ДНК), а материалом, обеспечивающим декодирование генетической информации, являются РНК. У отдельных вирусов первичным генетическим материалом является рибонуклеиновая кислота (РНК). Τᴀᴋᴎᴍ ᴏϬᴩᴀᴈᴏᴍ, нуклеиновые кислоты являются хранителями (носителями) и переносчиками генетической информации.

Сложившиеся представления о том, что первичным генетическим материалом у абсолютного большинства живых существ является ДНК, основаны на ряде прямых и косвенных доказательств, среди которых исторически самым первым прямым доказательством генетической роли ДНК является установленная еще в 1944 ᴦ. способность ДНК трансформировать пневмококки из одного типа в другой.

К настоящему времени трансформация установлена у микроорганизмов многих видов. В 50-е годы прямые доказательства генетической специфичности ДНК были получены также в результате изучения размножения бактериальных вирусов в бактериях и переноса ими генетической информации с помощью ДНК от одних бактериальных клеток к другим. Это явление известно под названием трансдукции.

Тогда же было установлено, что перенос ДНК от одних бактериальных клеток к другим осуществляется также в процессе конъюгации бактерий. К настоящему времени трансдукция и конъюгация изучены у многих видов бактерий. В совокупности, на трансформации, трансдукции и конъюгации основывается генетический анализ микроорганизмов.

Решающее прямое доказательство генетической роли ДНК было обеспечено разработкой методов генной инженерии, создавшей возможность конструирования рекомбинантных молекул ДНК с заданными свойствами.

К настоящему времени возможности генной инженерии показаны на примере клонирования многих генов самых различных организмов. Что касается косвенных доказательств, то они известны очень давно и их несколько. Для ДНК характерна специфичность локализации в клетках, поскольку она обнаруживается только в ядрах клеток (хромосомах), митохондриях (у животных) и хлоропластах (у растений).

У многих микроорганизмов ДНК локализована только в ядерной области (нуклеоиде) или в цитоплазме в виде плазмид. Для организмов каждого вида характерно определœенное количество ДНК на клетку (табл.10).

Таблица 10 Количество нуклеотидов в геномах различных организмов

ОрганизмыГаплоидньгй ядерный геномМитохондри-альныи геном
Гаплоидный набор хромосомНуклеотидные пары
Нуклеотидные пары
Аденовирус3,0 х 105 -З.З x 105
Фаг Т22,0 x 104
Фаг Т51,3 x 105
Е.

coli

4,5 х 10е
Дрожжи (Saccharomyces cerevisiae)1,8 х 1077,4 х 104
(A. tholiana)7,0 х 107
Дрозофила (D. melanogaster)2,7 х 1071,8 х 104
Лягушка (Rana pipiens)6,0 х 1091,6 х104
Мышь (Mus musculus)3,0 х 1091,5 х 104
Крыса (Rattus norwegius)6,0 х 1091,5 х 104
Человек (Homo sapiens)5,8 х 1091,5 х 104

*1000 пар оснований = 617 500 дальтон

Данные, которые приведены в табл. 10, показывают, что, начиная с вирусов, содержание ДНК прогрессивно повышается у бактерий, а затем и у позвоночных и, таким образом, находится в прямой связи со сложностью организации и поведения организмов. Известны, однако, исключения.

Собственную ДНК имеет

Для организмов каждого вида характерно то, что количество ДНК в соматических (диплоидных) клетках является вдвое большим, чем в половых (гаплоидных).

Будучи постоянным на клетку у организмов всœех видов, содержание ДНК не подвержено влиянию со стороны физиологических факторов, включая пол и старение, а также неблагоприятных воздействий, к примеру, голодания, повышения или понижения температуры.

Косвенными доказательствами генетической специфичности ДНК являются также данные о способности искусственно синтезированных аналогов азотистых оснований ДНК вызывать наследственные изменения клеток вследствие прямого включения их в ДНК клеток и данные о том, что мутагенный эффект УФ-излучения тесно связан со спектром поглощения его молекулами ДНК.

Читайте также:  Какое положение содержалось в табели о рангах

По форме клеток они могут быть округлыми (кокки) , палочковидными (бациллы, клостридии, псевдомонады) , извитыми (вибрионы, спириллы, спирохеты) , реже — звёздчатыми, тетраэдрическими, кубическими, C- или O-образными.

Формой определяются такие способности бактерий, как прикрепление к поверхности, подвижность, поглощение питательных веществ. Отмечено, например, что олиготрофы, то есть бактерии, живущие при низком содержании питательных веществ в среде, стремятся увеличить отношение поверхности к объёму, например, с помощью образования выростов (т. н. простек).

Из обязательных клеточных структур выделяют три: нуклеоид рибосомы цитоплазматическая мембрана (ЦПМ) С внешней стороны от ЦПМ находятся несколько слоёв (клеточная стенка, капсула, слизистый чехол) , называемых клеточной оболочкой, а также поверхностные структуры (жгутики, ворсинки) .

ЦПМ и цитоплазму объединяют вместе в понятие протопласт.

Хлоропласты являются одним из видов пластид. Хлоропласты имеют зеленый цвет за счет преобладающего в них пигмента хлорофилла. Основная их функция — фотосинтез.

Количество данных органоидов в клетке варьирует. У некоторых водорослей в клетках содержится одни большой хлоропласт, часто причудливой формы.

У высших растений их множество, особенно в мезофильной ткани листьев, где количество может достигать сотни штук на клетку.

У высших растений размер органоида около 5 мкм, форма округлая слегка вытянутая в одном направлении.

Хлоропласты в клетках развиваются из пропластид или путем деления надвое ранее существующих.

Строение хлоропласта

В строении хлоропластов выделяют внешнюю и внутреннюю мембраны, межмембранное пространство, строму, тилакоиды, граны, ламеллы, люмен.

Тилакоид представляет собой ограниченное мембраной пространство в форме приплюснутого диска.

Тилакоиды в хлоропластах объединяются в стопки, которые называют гранами. Граны связаны между собой удлиненными тилакоидами — ламеллами.

Полужидкое содержимое хлоропласта называется стромой.

В ней находятся его ДНК и РНК, рибосомы, обеспечивающие полуавтономность органоида (см. Симбиогенез).

Также в строме находятся зерна крахмала. Они образуются при избытке углеводов, образовавшихся при фотосинтетической активности. Жировые капли обычно формируются из мембран разрушающихся тилакоидов.

Функции хлоропластов

Основная функция хлоропластов — это фотосинтез — синтез глюкозы из углекислого газа и воды за счет солнечной энергии, которая улавливается хлорофиллом.

В качестве побочного продукта фотосинтеза выделяется кислород.

Однако процесс этот сложный и многоступенчатый, при котором синтезируются и побочные продукты, использующиеся как в самом хлоропласте, так и в остальных частях клетки.

Основным фотосинтетическим пигментом является хлорофилл. Он существует в нескольких разных формах. Кроме хлорофилла в фотосинтезе принимают участие пигменты каротиноиды.

Пигменты локализованы в мембранах тилакоидов, здесь протекают световые реакции фотосинтеза. Кроме пигментов здесь присутствуют ферменты и переносчики электронов.

Хлоропласты стараются расположиться в клетке так, чтобы их тилакоидные мембраны находились под прямым углом к солнечному свету.

Хлорофилл состоит из длинного углеводного кольца и порфириновой головки.

Хвост гидрофобен и погружен в липидный слой мембран тилакоидов. Головка гидрофильна и обращена к строме. Энергия света поглощается именно головкой, что приводит к возбуждению электронов.

Электрон отделяется от молекулы хлорофилла, который после этого становится электроположительным, т. е. оказывается в окисленной форме. Электрон принимается переносчиком, которые передает его на другое вещество.

Разные виды хлорофилла отличаются между собой несколько различным спектром поглощения солнечного света.

Больше всего в растениях хлорофилла А.

В строме хлоропласта происходят темновые реакции фотосинтеза. Здесь находятся ферменты цикла Кальвина и другие.

Органоиды, имеющие собственную ДНК: митохондрии и хлоропласты.

Митохондрии. Митохондрия образована двумя мембранами — внешнейи внутренней, между которыми расположено межмембранное пространство. Внутренняя мембрана образует множество впячиваний — крист, представляющих собой либо пластины, либо трубочки.

Такая ее организация обеспечивает огромную площадь внутренней мембраны. На ней располагаются ферменты, обеспечивающие преобразование энергии, заключенной в органических веществах (углеводах, липидах), в энергию АТФ, необходимую для жизнедеятельности клетки. Следовательно, функция митохондрий — участие в энергетических клеточных процессах.

Именно поэтому большое количество митохондрий присуще, например, мышечным клеткам, выполняющим большую работу.

Хлоропласты.Хлоропласты — пластиды высших растений, в которых идет процесс фотосинтеза, т.е. использование энергии световых лучей для образования из неорганических веществ (углекислого газа и воды) органических веществ с одновременным выделением в атмосферу кислорода. Хлоропласты имеют форму двояковыпуклой линзы, размер их около 4-6 мкм. Находятся они в паренхимных клетках листьев и других зеленых частей высших растений. Число их в клетке варьирует в пределах 25-50.

Снаружи хлоропласт покрыт оболочкой, состоящей из двух липопротеиновых мембран, внешней и внутренней.

Обе мембраны имеют толщину около 7нм, они отделены друг от друга межмембранным пространством. Внутренняя мембрана хлоропластов, как и других пластид образует складчатые впячивания внутрь матрикса или стромы. В зрелом хлоропласте высших растений видны два типа внутренних мембран. Это — мембраны, образующие плоские, протяженные стромы, и мембраны тилакоидов, плоских дисковидных вакуолей или мешков.

Связь внутренней мембраны хлоропласта с мембранными структурами внутри него хорошо прослеживается на примере мембран стромы. В этом случае внутренняя мембрана хлоропласта образует узкую (шириной около 20нм.) складку, которая может простираться почти через всю пластиду. Таким образом, строма может представлять собой плоский полый мешок или же иметь вид сети из разветвленных и связанных друг с другом каналов, располагающихся в одной плоскости.

Обычно стромы внутри хлоропласта лежат параллельно и не образуют связей между собой.
Кроме мембран стромы в хлоропластах обнаруживаются мембранные тилакоиды. Это плоские замкнутые мембранные мешки, имеющие форму диска. Величина межмембранного пространства у них также около 20-30нм.

Такие тилакоиды образуют стопки наподобие столбика монет, называемые гранами. Число тилакоидов на одну грану варьирует: от нескольких штук до 50 и более. Размер таких стопок может достигать 0,5 мкм, поэтому граны видны в некоторых объектах в световом микроскопе. Количество гран в хлоропластах высших растений может достигать 40-60. Тилакоиды в гране сближены друг с другом так, что внешние слои их мембран тесно соединяются; в месте соединения мембран тилакоидов образуется плотный слой толщиной около 2нм.

В матриксе ( строме) хлоропластов обнаруживаются молекулы ДНК, рибосомы; там же происходит первичное отложение запасного полисахарида, крахмала, в виде крахмальных зерен.

Источник