В какую свойства вписанной окружности

В какую свойства вписанной окружности thumbnail

Окружность, вписанная в многоугольник ABCDE

Окружность называют вписанной в угол, если она лежит внутри угла и касается его сторон. Центр окружности, вписанной в угол, лежит на биссектрисе этого угла.

Окружность называется вписанной в выпуклый многоугольник, если она лежит внутри данного многоугольника и касается всех его сторон.

В многоугольнике[править | править код]

  • Если в данный выпуклый многоугольник можно вписать окружность, то биссектрисы всех внутренних углов данного многоугольника пересекаются в одной точке, которая является центром вписанной окружности.

В треугольнике[править | править код]

Окружность, вписанная в треугольник со сторонами a, b, c.

Свойства вписанной окружности:

где  — стороны треугольника,  — высоты, проведённые к соответствующим сторонам[1];

где  — площадь треугольника, а  — его полупериметр.
,  — полупериметр треугольника (Теорема котангенсов).

  • Если  — основание равнобедренного треугольника , то окружность, касающаяся сторон угла в точках и , проходит через центр вписанной окружности треугольника .
  • Теорема Эйлера: , где  — радиус описанной вокруг треугольника окружности,  — радиус вписанной в него окружности,  — центр описанной окружности,  — центр вписанной окружности.
  • Если прямая, проходящая через точку I параллельно стороне , пересекает стороны и в точках и , то .
  • Если точки касания вписанной в треугольник окружности соединить отрезками, то получится треугольник со свойствами:
    • Биссектрисы T являются серединными перпендикулярами T1
    • Пусть T2 — ортотреугольник T1. Тогда его стороны параллельны сторонам исходного треугольника T.
    • Пусть T3 — серединный треугольник T1. Тогда биссектрисы T являются высотами T3.
    • Пусть T4 — ортотреугольник T3, тогда биссектрисы T являются биссектрисами T4.
  • Радиус вписанной в прямоугольный треугольник с катетами a, b и гипотенузой c окружности равен .
  • Расстояние от вершины С треугольника до точки, в которой вписанная окружность касается стороны, равно .
  • Расстояние от вершины C до центра вписанной окружности равно , где  — радиус вписанной окружности, а γ — угол вершины C.
  • Расстояние от вершины C до центра вписанной окружности может также быть найдено по формулам и
  • Теорема о трезубце или теорема трилистника: Если D — точка пересечения биссектрисы угла A с описанной окружностью треугольника ABC, I и J — соответственно центры вписанной и вневписанной окружности, касающейся стороны BC, тогда .

Полувписанная окружность и центр гомотетии G для вписанной и описанной окружностей с радиусами соответственно r и R. Лемма Веррьера: Центр вписанной окружности лежит на отрезке, соединяющем точки касания сторон треугольника и окружности Веррьера (полувписанной окружности)

  • Теорема Фейербаха. Окружность девяти точек касается всех трёх вневписанных окружностей, а также вписанной окружности. Точка касания окружности Эйлера и вписанной окружности известна как точка Фейербаха.

Связь вписанной и описанной окружностей[править | править код]

[4]
,

где  — полупериметр треугольника,  — его площадь.

  • Перпендикуляры, восставленные к сторонам треугольника в точках касания вневписанных окружностей, пересекаются в одной точке. Эта точка симметрична центру вписанной окружности относительно центра описанной окружности[5].
  • Для треугольника можно построить полувписанную окружность, или окружность Варьера. Это окружность, касающаяся двух сторон треугольника и его описанной окружности внутренним образом. Отрезки, соединяющие вершины треугольника и соответствующие точки касания окружностей Веррьера с описанной окружностью, пересекаются в одной точке. Эта точка служит центром гомотетии с положительным коэффициентом, переводящей описанную окружность во вписанную.
  • Центр вписанной окружности лежит на отрезке, соединяющем точки касания сторон треугольника и полувписанной окружности.

Полувписанная окружность и центр гомотетии G для вписанной и описанной окружностей с радиусами соответственно r и R

В четырёхугольнике[править | править код]

  • Описанный четырёхугольник, если у него нет самопересечений («простой»), должен быть выпуклым.
  • Некоторые (но не все) четырёхугольники имеют вписанную окружность. Они называются описанными четырёхугольниками. Среди свойств этих четырёхугольников наиболее важным является то, что суммы противоположных сторон равны. Это утверждение называется теоремой Пито.
  • Иными словами, в выпуклый четырёхугольник ABCD можно вписать окружность тогда и только тогда, когда суммы его противоположных сторон равны: .
  • Во всяком описанном четырёхугольнике две середины диагоналей и центр вписанной окружности лежат на одной прямой (теорема Ньютона). На ней же лежит середина отрезка с концами в точках пересечения продолжений противоположных сторон четырёхугольника (если они не параллельны). Эта прямая называется прямой Ньютона. На рисунке она зелёная, диагонали красные, отрезок с концами в точках пересечения продолжений противоположных сторон четырёхугольника тоже красный.
  • Центр описанной около четырёхугольника окружности — точка пересечения высот треугольника с вершинами в точке пересечения диагоналей и точках пересечения противоположных сторон (теорема Брокара).

В сферическом треугольнике[править | править код]

Вписанная окружность для сферического треугольника — это окружность, касающаяся всех его сторон.

  • Тангенс радиуса[6] вписанной в сферический треугольник окружности равен[7]:73-74
  • Вписанная в сферический треугольник окружность принадлежит сфере. Радиус, проведенный из центра сферы через центр вписанной окружности пересечет сферу в точке пересечения биссектрис углов (дуг больших кругов сферы, делящих углы пополам) сферического треугольника[7]:20-21.

Обобщения[править | править код]

  • Вписанной сферой называется сфера, касающаяся всех граней многогранника.
  • Эллипс Штейнера — вписанный в треугольник эллипс.
Читайте также:  Варикап какие свойства этого полупроводникового элемента используются

См. также[править | править код]

Примечания[править | править код]

  1. ↑ Altshiller-Court, 1925, p. 79.
  2. Ефремов Д. Новая геометрия треугольника. — Одесса, 1902. — С. 130. — 334 с.
  3. Ефремов Д. Новая геометрия треугольника. Изд. 2. Серия: Физико-математическое наследие (репринтное воспроизведение издания).. — Москва: Ленанд, 2015. — 352 с. — ISBN 978-5-9710-2186-5.
  4. ↑ Longuet-Higgins, Michael S., «On the ratio of the inradius to the circumradius of a triangle», Mathematical Gazette 87, March 2003, 119—120.
  5. ↑ Мякишев А. Г. Элементы геометрии треугольника. Серия: «Библиотека „Математическое просвещение“». М.: МЦНМО, 2002. c. 11, п. 5
  6. ↑ Здесь радиус окружности измеряется по сфере, то есть представляет собой градусную меру дуги большого круга, соединяющей точку пересечения радиуса сферы, проведенного из центра сферы через центр окружности, со сферой и точку касания окружностью стороны треугольника.
  7. 1 2 Степанов Н. Н. Сферическая тригонометрия. — М.—Л.: ОГИЗ, 1948. — 154 с.

Литература[править | править код]

  • Факультативный курс по математике. 7-9 / Сост. И. Л. Никольская. — М.: Просвещение, 1991. — С. 89. — 383 с. — ISBN 5-09-001287-3.
  • Понарин Я. П. Элементарная геометрия. В 2 т. — М.: МЦНМО, 2004. — С. 52-53. — ISBN 5-94057-170-0.
  • Altshiller-Court, Nathan (1925), College Geometry: An Introduction to the Modern Geometry of the Triangle and the Circle (2nd ed.), New York: Barnes & Noble

Источник

Окружность вписана в n-угольник, если она касается всех сторон этого n-угольника (рис. 8.106). 

Окружность описана около n-угольника, если все вершины n-угольника лежат на окружности (рис. 8.107). 

В какую свойства вписанной окружности

Свойства вписанной окружности

1. Окружность можно вписать в любой треугольник.

2. Окружность можно вписать в четырехугольник, если суммы длин его противолежащих сторон равны. 

Например, на рисунке 8.106 . 

Так, окружность можно вписать в квадрат и в ромб, но нельзя вписать в параллелограмм и в прямоугольник.

Свойства описанной окружности

1. Окружность можно описать около любого треугольника.

2. Окружность можно описать около четырехугольника, если суммы его противолежащих углов равны. 

Например, на рисунке 8.107 . 

Так, окружность можно описать около квадрата и прямоугольника, но нельзя описать около параллелограмма и ромба.

Расположение центров окружностей, описанных около треугольника:

1) центр окружности расположен на пересечении серединных перпендикуляров к сторонам треугольника;

2) если треугольник остроугольный, то центр окружности расположен в этом треугольнике: 

а) в равностороннем треугольнике центром окружности является точка пересечения высот, биссектрис, медиан треугольника (центры вписанной и описанной окружностей совпадают (рис. 8.108); 

б) в равнобедренном треугольнике центр окружности расположен на биссектрисе, проведенной из вершины треугольника к его основанию (рис. 8.109);

3) если треугольник прямоугольный, то центр окружности расположен на середине гипотенузы (рис. 8.110);

4) если треугольник тупоугольный, то центр окружности расположен вне треугольника (рис. 8.111).

В какую свойства вписанной окружности

Расположение центров окружностей, вписанных в треугольник:

1) центр окружности, вписанной в треугольник, расположен в этом треугольнике (рис. 8.112 – 8.115);

2) центром окружности является точка пересечения биссектрис треугольника;

3) в равностороннем треугольнике центром окружности является точка пересечения высот, биссектрис, медиан треугольника. 

В какую свойства вписанной окружности

Формулы для вычисления радиусов вписанной и описанной окружностей

Радиус окружности, описанной около многоугольника, как правило, обозначают , а радиус окружности, вписанной в многоугольник, обозначают : 

1) для равностороннего треугольника со стороной :

, (8.34)

; (8.35)

2) для произвольного треугольника со сторонами  и площадью : 

, (8.36)

; (8.37)

3) для прямоугольного треугольника с катетами  и гипотенузой : 

, (8.38)

; (8.39)

4) для квадрата со стороной  и диагональю : 

, (8.40)

; (8.41)

5) для прямоугольника с диагональю : 

; (8.42)

6) для ромба с высотой : 

; (8.43)

7) для трапеции с высотой , при условии, что в трапецию можно вписать окружность: 

. (8.44)

Если около трапеции можно описать окружность, то, проведя диагональ трапеции и рассмотрев один из полученных треугольников со сторонами  и площадью , по формуле  найдем радиус окружности описанной около треугольника, а значит и около трапеции (рис. 8.116);

8) для правильного шестиугольника со стороной : 

, (8.45)

. (8.46)

Правильный шестиугольник состоит из шести правильных треугольников (рис. 8.117) и точка  является центром вписанной в него и описанной около него окружностей. 

В какую свойства вписанной окружности

Пример 1. Найдите сторону квадрата, если известно, что разность между площадью квадрата и площадью вписанного в него круга равна .

Решение. Так как площадь круга радиуса  находят по формуле 8.32, а площадь квадрата со стороной  находят по формуле , то согласно условию задачи запишем: , .

А так как , то , , , , .

Ответ: .

Пример 2. Площадь прямоугольника равна 4, а разность длин его смежных сторон рана 3. Найдите радиус окружности, описанной около этого прямоугольника. 

Решение. Площадь прямоугольника со смежными сторонами  и  находят по формуле .

Пусть , тогда  (рис. 8.118).

Получим: , , откуда , следовательно, , .

По теореме Пифагора найдем диагональ прямоугольника: , . Согласно формуле 8.42 .

Ответ: .

Пример 3. Найдите радиус окружности, вписанной в ромб, если его диагонали равны 6 и 8. 

В какую свойства вписанной окружности

Решение. По теореме Пифагора найдем сторону ромба (рис. 8.119):

, , .

По формуле  найдем площадь ромба: .

Но площадь ромба можно найти и по формуле , а так как , то . Тогда , а .

Читайте также:  Какие технологические свойства материалов

Ответ: 2,4.

Пример 4. Найдите длину окружности, вписанной в правильный треугольник, если его площадь равна .

Решение. Площадь правильного треугольника со стороной  находят по формуле: .

Зная площадь треугольника, найдем его сторону: , , . 

По формуле 8.35 найдем радиус окружности, вписанной в этот треугольник: .

По формуле 8.30 найдем длину окружности: .

Ответ: .

Пример 5. Радиус окружности, описанной около равнобедренного прямоугольного треугольника равен 2. Найдите радиус окружности, вписанной в этот треугольник. 

Решение. Радиус окружности, описанной около прямоугольного треугольника с гипотенузой  находят по формуле 8.38. Тогда . 

Так как треугольник равнобедренный, то его катеты  и  раны и по теореме Пифагора , откуда , . 

Радиус окружности, вписанной в прямоугольный треугольник, находят по формуле 8.39. В нашем случае , .

Ответ: .

Пример 6. Один из катетов прямоугольного треугольника равен 8, а радиус окружности, вписанной в треугольник равен 3. Найдите площадь треугольника.

В какую свойства вписанной окружности

Решение. Рассмотрим прямоугольный треугольник . Точка  является центром вписанной в треугольник окружности (рис. 8.120).

Так как радиусы вписанной в треугольник окружности перпендикулярны сторонам треугольника в точках касания, то имеем квадрат  со стороной 3. Если катет , а сторона квадрата , то .

Пусть отрезок . По свойству касательных  и .

Тогда по теореме Пифагора  или , откуда , .

Найдем катет : .

Найдем площадь треугольника: , .

Ответ: 60.

Пример 7. Окружность, центр которой расположен на большей стороне треугольника, делит эту сторону на отрезки 4 и 8 и касается двух других его сторон, длина одной из которых равна 6. Найдите радиус окружности, вписанной в этот треугольник (рис.8.121).

В какую свойства вписанной окружности

Решение. Согласно свойству биссектрисы треугольника запишем: , откуда . 

Радиус окружности, вписанной в треугольник, найдем по формуле 8.37.

В свою очередь по формуле Герона  найдем площадь треугольника. Так как , то .

Тогда .

Ответ:  .

Пример 8. В прямоугольную трапецию вписана окружность радиуса 3, которая в точке касания делит ее боковую сторону на отрезки 4 и 5. Найдите площадь трапеции. 

Решение. Согласно условию задачи и рисунку 8.122, запишем: , .

По свойству четырехугольника, описанного около окружности, получим: , , .

Согласно формуле  найдем площадь трапеции: .

Ответ: 45.

Пример 9. Длины оснований равнобедренной трапеции относятся как , а длина ее высоты равна 17. Вычислите площадь круга, описанного около трапеции, если известно, что средняя линия трапеции равна ее высоте.

В какую свойства вписанной окружности

Решение. Рассмотрим равнобедренную трапецию  (рис. 8.123) и проведем диагональ трапеции .

Радиус окружности, описанной около треугольника , найдем по формуле 8.36:

, .

Зная, что  и вводя коэффициент пропорциональности , получим , .

Так как длина средней линии трапеции равна высоте трапеции, то , откуда . Тогда , .

Поскольку четырехугольник  является прямоугольником, то , тогда .

Согласно теореме Пифагора запишем:

, ;

, .

По формуле 8.36 найдем радиус окружности, описанной около треугольника , а, следовательно, и около трапеции :

.

Согласно формуле 8.32 найдем площадь круга: .

Ответ: .

Пример 10. В правильный шестиугольник вписана окружность и около него описана окружность. Найдите площадь образовавшегося кольца, если сторона шестиугольника равна .

Решение. По формуле 8.45 найдем радиус окружности, описанной около правильного шестиугольника: . 

По формуле 8.46 найдем радиус окружности, вписанной в этот шестиугольник. Так как , то . 

Площадь круга находят по формуле 8.32. Тогда , а .

Найдем площадь кольца: , .

Ответ: .

1. В любой треугольник можно вписать окружность и около любого треугольника можно описать окружность.

2. Не во всякий четырехугольник можно вписать окружность. Например, окружность можно вписать в ромб и квадрат, но нельзя вписать в параллелограмм и прямоугольник.

3. Не около всякого четырехугольника можно описать окружность. Например, окружность можно описать около квадрата и прямоугольника, но нельзя описать около параллелограмма и ромба.

4. Не во всякую трапецию можно писать окружность и не около всякой трапеции можно описать окружность. Описать окружность можно только около равнобедренной трапеции. 

5. Если многоугольник правильный (все его стороны и все его углы равны между собой), то в него всегда можно вписать окружность и около него всегда можно описать окружность. Причем, центры этих окружностей совпадают.

Длину окружности радиуса  находят по формуле: 

. (8.30)

Площадь круга радиуса  находят по формуле: 

. (8.32)

Источник

Окружность, вписанная в многоугольник ABCDE

Окружность, вписанная в многоугольник ABCDE

Окружность называют вписанной в угол, если она лежит внутри угла и касается его сторон. Центр окружности, вписанной в угол, лежит на биссектрисе этого угла.

Окружность называется вписанной в выпуклый многоугольник, если она лежит внутри данного многоугольника и касается всех его сторон.

В многоугольнике

  • Если в данный выпуклый многоугольник можно вписать окружность, то биссектрисы всех внутренних углов данного многоугольника пересекаются в одной точке, которая является центром вписанной окружности.

В треугольнике

Окружность, вписанная в треугольник со сторонами a, b, c.

Окружность, вписанная в треугольник со сторонами a, b, c.

Свойства вписанной окружности:

где  — стороны треугольника,  — высоты, проведённые к соответствующим сторонам[1];

Формула Эйлера

где  — площадь треугольника, а  — его полупериметр.
,  — полупериметр треугольника (Теорема котангенсов).

  • Если  — основание равнобедренного треугольника , то окружность, касающаяся сторон угла в точках и , проходит через центр вписанной окружности треугольника .
  • Теорема Эйлера: , где  — радиус описанной вокруг треугольника окружности,  — радиус вписанной в него окружности,  — центр описанной окружности,  — центр вписанной окружности.
  • Если прямая, проходящая через точку I параллельно стороне , пересекает стороны и в точках и , то .
  • Если точки касания вписанной в треугольник окружности соединить отрезками, то получится треугольник со свойствами:
    • Биссектрисы T являются серединными перпендикулярами T1
    • Пусть T2 — ортотреугольник T1. Тогда его стороны параллельны сторонам исходного треугольника T.
    • Пусть T3 — серединный треугольник T1. Тогда биссектрисы T являются высотами T3.
    • Пусть T4 — ортотреугольник T3, тогда биссектрисы T являются биссектрисами T4.
  • Радиус вписанной в прямоугольный треугольник с катетами a, b и гипотенузой c окружности равен .
  • Расстояние от вершины С треугольника до точки, в которой вписанная окружность касается стороны, равно .
  • Расстояние от вершины C до центра вписанной окружности равно , где  — радиус вписанной окружности, а γ — угол вершины C.
  • Расстояние от вершины C до центра вписанной окружности может также быть найдено по формулам и
  • Теорема о трезубце или теорема трилистника: Если D — точка пересечения биссектрисы угла A с описанной окружностью треугольника ABC, I и J — соответственно центры вписанной и вневписанной окружности, касающейся стороны BC, тогда .
Читайте также:  Какие свойства в арбузе

Полувписанная окружность и центр гомотетии G для вписанной и описанной окружностей с радиусами соответственно r и R. Лемма Веррьера: Центр вписанной окружности лежит на отрезке, соединяющем точки касания сторон треугольника и окружности Веррьера (полувписанной окружности)

Полувписанная окружность и центр гомотетии G для вписанной и описанной окружностей с радиусами соответственно r и R. Лемма Веррьера: Центр вписанной окружности лежит на отрезке, соединяющем точки касания сторон треугольника и окружности Веррьера (полувписанной окружности)

  • Теорема Фейербаха. Окружность девяти точек касается всех трёх вневписанных окружностей, а также вписанной окружности. Точка касания окружности Эйлера и вписанной окружности известна как точка Фейербаха.

Связь вписанной и описанной окружностей

[4]
,

где  — полупериметр треугольника,  — его площадь.

  • Перпендикуляры, восставленные к сторонам треугольника в точках касания вневписанных окружностей, пересекаются в одной точке. Эта точка симметрична центру вписанной окружности относительно центра описанной окружности[5].
  • Для треугольника можно построить полувписанную окружность, или окружность Варьера. Это окружность, касающаяся двух сторон треугольника и его описанной окружности внутренним образом. Отрезки, соединяющие вершины треугольника и соответствующие точки касания окружностей Веррьера с описанной окружностью, пересекаются в одной точке. Эта точка служит центром гомотетии с положительным коэффициентом, переводящей описанную окружность во вписанную.
  • Центр вписанной окружности лежит на отрезке, соединяющем точки касания сторон треугольника и полувписанной окружности.

Полувписанная окружность и центр гомотетии G для вписанной и описанной окружностей с радиусами соответственно r и R

Полувписанная окружность и центр гомотетии G для вписанной и описанной окружностей с радиусами соответственно r и R

В четырёхугольнике

  • Описанный четырёхугольник, если у него нет самопересечений («простой»), должен быть выпуклым.
  • Некоторые (но не все) четырёхугольники имеют вписанную окружность. Они называются описанными четырёхугольниками. Среди свойств этих четырёхугольников наиболее важным является то, что суммы противоположных сторон равны. Это утверждение называется теоремой Пито.
  • Иными словами, в выпуклый четырёхугольник ABCD можно вписать окружность тогда и только тогда, когда суммы его противоположных сторон равны: .

Теорема Ньютона (планиметрия) и прямая Ньютона

  • Во всяком описанном четырёхугольнике две середины диагоналей и центр вписанной окружности лежат на одной прямой (теорема Ньютона). На ней же лежит середина отрезка с концами в точках пересечения продолжений противоположных сторон четырёхугольника (если они не параллельны). Эта прямая называется прямой Ньютона. На рисунке она зелёная, диагонали красные, отрезок с концами в точках пересечения продолжений противоположных сторон четырёхугольника тоже красный.
  • Центр описанной около четырёхугольника окружности — точка пересечения высот треугольника с вершинами в точке пересечения диагоналей и точках пересечения противоположных сторон (теорема Брокара).

В сферическом треугольнике

Вписанная окружность для сферического треугольника — это окружность, касающаяся всех его сторон.

  • Тангенс радиуса[6] вписанной в сферический треугольник окружности равен[7]:73-74
  • Вписанная в сферический треугольник окружность принадлежит сфере. Радиус, проведенный из центра сферы через центр вписанной окружности пересечет сферу в точке пересечения биссектрис углов (дуг больших кругов сферы, делящих углы пополам) сферического треугольника[7]:20-21.

Обобщения

  • Вписанной сферой называется сфера, касающаяся всех граней многогранника.
  • Эллипс Штейнера — вписанный в треугольник эллипс.

См. также

Примечания

  1. ↑ Altshiller-Court, 1925, p. 79.
  2. Ефремов Д. Новая геометрия треугольника. — Одесса, 1902. — С. 130. — 334 с.
  3. Ефремов Д. Новая геометрия треугольника. Изд. 2. Серия: Физико-математическое наследие (репринтное воспроизведение издания).. — Москва: Ленанд, 2015. — 352 с. — ISBN 978-5-9710-2186-5.
  4. ↑ Longuet-Higgins, Michael S., «On the ratio of the inradius to the circumradius of a triangle», Mathematical Gazette 87, March 2003, 119—120.
  5. ↑ Мякишев А. Г. Элементы геометрии треугольника. Серия: «Библиотека „Математическое просвещение“». М.: МЦНМО, 2002. c. 11, п. 5
  6. ↑ Здесь радиус окружности измеряется по сфере, то есть представляет собой градусную меру дуги большого круга, соединяющей точку пересечения радиуса сферы, проведенного из центра сферы через центр окружности, со сферой и точку касания окружностью стороны треугольника.
  7. 1 2 Степанов Н. Н. Сферическая тригонометрия. — М.—Л.: ОГИЗ, 1948. — 154 с.

Литература

  • Факультативный курс по математике. 7-9 / Сост. И. Л. Никольская. — М.: Просвещение, 1991. — С. 89. — 383 с. — ISBN 5-09-001287-3.
  • Понарин Я. П. Элементарная геометрия. В 2 т. — М.: МЦНМО, 2004. — С. 52-53. — ISBN 5-94057-170-0.
  • Altshiller-Court, Nathan (1925), College Geometry: An Introduction to the Modern Geometry of the Triangle and the Circle (2nd ed.), New York: Barnes & Noble

Эта страница в последний раз была отредактирована 24 сентября 2020 в 17:38.

Источник