Аминогруппа проявляет какие свойства
Химические свойства. Реакции за счет аминогруппы. Основные свойства. Подобно аминам жирного ряда, ароматические амины, будучи производными аммиака, проявляют свойства оснований и с кислотами образуют соли замещенного аммония (стр. 271, 272). Например [c.387]
Амфотерность аминокислот. Аминокислоты — амфотерные соединения. Благодаря наличию карбоксильных групп они способны проявлять кислотные свойства. В то же время в них имеются аминогруппы, способные присоединять ионы водорода, превращаясь в группы замещенного аммония (стр. 272). Поэтому аминокислоты, подобно аминам, могут проявлять основные свойства. [c.280]
О б р а 3 о в а н и е в и у т р е и и и х солеп. Карбоксильная группа, входящая в состав аминокислот, обладает кислотными свойствами (может отщеплять протон), аминогруппа — основными свойствами (может присоединять протон). За счет взаимодействия этих двух групп аминокислоты могут образовывать внутрен-ние соли, например [c.444]
Химические свойства. Наиболее характерное свойство аминокислот — амфотерность. Основные свойства обусловлены наличием аминогруппы, кислотные — карбоксильной группы. [c.307]
Химические свойства. Свойства аминов определяются аминогруппой, азот которой содержит неподеленную пару электронов. Поэтому амины, подобно аммиаку, проявляют основные свойства. Так, в водных растворах амины, присоединяя протон, образуют аммонийные соединения [c.204]
Свойства. Химические свойства этих соединений обусловлены одновременным присутствием в молекулах двух функциональных групп. Карбоксильная группа, входящая в состав аминокислот, обладает кислотными свойствами (может отщеплять ион водорода), аминогруппа — основными свойствами (может присоединять ион водорода). За счет этого аминокислоты обладают амфотерностью реагируют с щелочами и кислотами, образуя соли, например [c.244]
Следовательно, учитывая свойства карбоксильной группы (кислотные свойства) и свойства аминогруппы (основные свойства), легко понять, что аминокислоты обладают амфотерными свойствами. [c.411]
Аминокислоты отличаются друг от друга пе только величиной, но и числом входящих в них групп ЫНг и СООН, а также наличием в их составе атомов других элементов, таких, как 8, Вг, I. В настоящее время открыто около 26 различных аминокислот, входящих в состав белков. Примерно половина этого количества содержит лишь по одной группе NH2 и СООН они являются простыми, или моноаминокислотами. Другие содержат две группы СООН на одну аминогруппу и обладают характерными кислыми свойствами. Третья группа аминокислот обладает явно выраженными основными свойствами, она содержит одну группу СООН на две аминогруппы. Кроме того, в состав белков входят несколько циклических аминокислот, более сложных по составу и структуре их радикала К. [c.337]
При введении сульфогрупп или карбоксильных групп в азокрасители, содержащие аминогруппы, основные свойства красителей подавляются, красители приобретают кислотные свойства, становятся водорастворимыми и могут окрашивать белковые волокна (шерсть, натуральный шелк, полиамидное волокно). [c.92]
Вернемся еще раз к свойствам аминогруппы глицина она проявляет более сильные основные свойства (более высокое значение рКа), чем обычный органический амин. Можно ожидать, что единичный отрицательный заряд карбоксильной группы приведет к повышению электронной плотности на аминогруппе и что электростатическое притяжение (эффект ноля) между аммоний-катионом и карбоксилат-апионом затруднит отрыв протона от аммонийной группы. Это действительно так, и оба эффекта играют важную роль. Тем не менее рКа аминогруппы глицина равен 9,60, тогда как у метиламина 10,64 (табл. 2.1). Это происходит потому, что наиболее важным, или определяющим, эффектом является оттягивание электронов карбоксильной (карбонильной) группой. Так, если нейтрализовать весь заряд карбоксильной группы путем превращения ее в амид, то рКа аминогруппы глициламида равен 8,0, а для глицилглицина 8,13. При этом не возможны ни повышение электронной плотности карбоксилат-ани-оном, ни эффект поля (электростатическое влияние) единственным эффектом остается оттягивание электронов амидной карбонильной группой. Отметим, что этерификация аспарагиновой и глутаминовой кислот аналогичным образом влияет на свойства полученных соединений (табл. 2.1). Аминогруппы диэтиловых эфиров обладают кислыми свойствами. [c.40]
Аминокислоты относятся к бифункциональным соединениям основные свойства обусловлены аминогруппой, кислотные — карбоксигруппой. Водные растворы одноосновных моноаминокислот нейтральны. Эта особенность связана с образованием внутренней соли протон от карбоксила присоединяется к аминогруппе. Такая внутренняя соль имеет структуру биполярного иона. Характерной особенностью а-аминокислот является их способность взаимодействовать между собой, образуя пептидную связь, В дипептиде (соединение двух аминокислот) у одного из [c.414]
Аминокислоты, в основном, — бесцветные кристаллические вещества с высокими пл—230—280 С. Хорошо растворимы в воде. Водные растноры одноосновных аминокислот имеют реакцию, близкую к нейтральной (pH 6,8). Это связано с тем, что аминокислоты содержат одновременно карбоксильную группу, обладающую кислыми свойствами, и аминогруппу, характеризующуюся основными свойствами. Поэтому аминокислоты способны образовывать соли как с кислотами, так и с основаниями, являясь таким образом амфотерными соединениями. [c.223]
Меламин (2,4,6-триамино-1,3,5-триазин) — кристаллическое вещество с /цл = 354°С. Три аминогруппы придают ему основные свойства. Меламин можно получать из карбамида [c.261]
Кислотно-основные свойства комплексных соединений связаны с устойчивостью комплексов в растворе. В приведенном ниже ряду устойчивость в водном растворе, характеризующаяся в данном случае тенденцией к замещению аминогрупп молекулами воды, уменьщается снизу вверх, тогда как pH растворов этих комплексов увеличивается в том же порядке [c.287]
Полиамиды и их свойства. Наиболее типичным представителем этой группы полимеров является капрон. Капрон можно рассматривать как продукт конденсации аминокапроновой кислоты ЫНз— —СН2—(СН2)4—СООН. Аминокапроновая кислота относится к органическим соединениям со смешанными функциями и содержит кроме кислотной группы —СООН аминогруппу —NH2, обладающую основными свойствами. Помимо возможного взаимодействия между отдельными молекулами этого соединения, капроновая кислота реагирует в пределах одной молекулы ( голова с хвостом ), образуя гетероцикл — капролактам (см. гл. 14) [c.487]
Основные свойства выражены у ароматических аминов значительно слабее, чем у аминов жирного ряда. Бензольный остаток, усиливающий кислотность гидроксильной группы (в результате чего фенолы являются более сильными кислотами, чем спирты), ослабляет основной характер аминогруппы. Ариламины нейтральны на лакмус, но с минеральными кислотами образуют устойчивые соли, водные растворы которых имеют кислую реакцию вследствие частичного гидро лиза. Очевидно, образованием таких солей объясняется способность ароматических аминов, несмотря на незначительную основность, осаждать гидраты окисей металлов из растворов соответствующих солей при этом кислота, образующаяся в результате гидролиза соли металла, связывается амином, что способствует дальнейшему образованию гидрата окиси. [c.567]
Атомы галоида, находящиеся в орто- или пара-положении к аминогруппе, значительно ослабляют основные свойства аминов, тогда как атом галоида в мета-положении оказывает лишь незначительное влияние на основность. [c.577]
Амины в реакциях с кислотами проявляют основные свойства. Это обусловлено наличием неподеленнои электронной пары у атома азота аминогруппы, за счет которой образуется координационная связь с протоном (получаются аммониевые соли). [c.175]
В молекуле амина заметно не только влияние бензольного кольца на основные свойства аминогруппы. Аминогруппа также влияет на бензольное кольцо, увеличивая в нем электронную плотность и облегчая реакции замещения. Так, анилин, подобно фенолу, реагирует с бромной водой [c.72]
С более сильными (неорганическими) кислотами они проявляют свойства оснований и образуют соли за счет основных свойств аминогруппы [c.228]
Уменьшение основных свойств аминогруппы в амидах по сравнению с аминами объясняется смещением электронной пары азота в сторону [c.415]
Аминогруппа обусловливает основные свойства, что объясняется ее строением. Свойства аминогруппы находят свое отражение в реакциях с участием аминокислот. Так, взаимодействуя с H I, они образуют солянокислые соли [c.357]
Однако основные свойства у ароматических аминов гораздо менее выражены, чем у жирных. В последних под влиянием алкильных радикалов основность аминогруппы увеличивается, н жирные амины, как уже указано (стр. 272), являются более сильными основаниями, чем аммиак. В ароматических же аминах основные свойства аминогруппы, непосредственно связанной с бензольным ядром, под влиянием последнего ослаблены поэтому ароматические амины представляют собой более слабые основания, чем аммиак. Водный раствор анилина СвНаЫНз не показывает щелочной реакции на лакмус его соли с соляной или серной кислотами сильно гидролизуются, и их растворы в воде окрашивают лакмус в красный цвет, как растворы солей слабых оснований и сильных кислот. [c.387]
Поэтому водные растворы аминов имеют щелочную реакцию и окрашивают лакмус в синий цвет. Более того, под влиянием простейших алкильных радикалов основные свойства аминогруппы увеличиваются, поэтому низшие амины жирного ряда являются значительно более сильными основаниями, чем аммиак. [c.272]
Аминокислоты вследствие присутствия в их молекуле карбоксильной (кислотной) группы и аминогруппы (основной) обладают амфотерными свойствами, т. е. способны образовывать соли как с основаниями, так и с кислотами [c.234]
Совершенно аналогично проявляются основные свойства аминов. При действии кислот азот аминогруппы присоединяет ион водорода и амины образуют соли замещенного аммония. Последние иногда изображают в виде молекулярных соединений амина и кислоты. Например [c.272]
Хорощо известно, что ароматическое ядро существенно влияет на свойства соединенной с ним аминогруппы (ослабление основных свойств анилина по сравнению с алифатическими аминами), а аминогруппа в свою очередь влияет на свойства ароматического ядра. Это результат сопряжения свободной э лектронной пары азота с подвижными п-электронами ароматического ядра. Сопряжение может осуществиться лишь при параллельной ориентации р-электронной орбитали электронной пары атома азота и п-электронной системы ароматического ядра [c.499]
Химические свойства анилина обусловлены наличием в его молекуле аминогруппы —NH2 и бензольного ядра. Подобно аминам, производным углеводородов предельного ряда, анилин реагирует с кислотами с образованием солей, но окраски раствора лакмуса не изменяет. Следовательно, анилин более слабое основание, чем амины предельного ряда. Чем это можно объяснить Чтобы ответить на этот вопрос, вспомним о взаимном влиянии атомов и атомных групп в молекулах. Как и в молекуле фенола (III, с. 90), бензольное ядро несколько оттягивает свободную электронную пару от атома азота аминогруппы. Вследствие этого электронная плотность на атоме азота в молекуле анилина уменьшается и он слабее притягивает к себе протоны, т. е. основные свойства анилина ослабляются. Важнейшие химические свойства анилина показаны в таблице 1. [c.7]
Химические свойства. В молекулах аминокислот содержатся карбоксильные группы, имеющие кислотные свойства, и аминогруппы, обладающие основными свойствами. Они и обусловливают характерные химические свойства этих веществ. [c.10]
Важнейшим представителем группы высокомолекулярных ссединений, называемых высокомолекулярными электролитами, служат белки, молекулы которых построены из аминокислот. Аминокислоты содержат карбоксильную группу, определяющую кислотные свойства, и аминогруппу, определяющую основные свойства, т. е. белки обладают как кислотными, так и основными свойствами, благодаря чему молекулы белков являются амфотерными электролитами. Вследствие наличия заряда высокополимерные соединения, так же как и лиофобные коллоиды, могут коагулировать под действием электролитов. [c.207]
Основные свойства у анилина выражены очень слабо, так как сказывается влияние бензольного ядра на аминогруппу. [c.638]
В случае анилина сказывается влияние бензольного ядра. Последнее сильнее притягивает неподеленную электронную пару азота аминогруппы. Как следствие этого, на азоте уменьшается электронная плотность, слабее связывается ион водорода и меньше образуется свободных гидроксильных ионов. Поэтому анилин проявляет очень слабые основные свойства. [c.408]
Аминокистоты относятся к бифункциональным соединениям основные свойства обусловлены аминогруппой, кислотные — карбоксигруппой. Водные растворы одноосновных моноаминокислот нейтральны. Эта особенность связана с образованием внутренней соли протон от карбоксила присоединяется к аминогруппе. Такая внутренняя соль имеет структуру биполярного иона. [c.362]
Но эти соли весьма непрочны и легко разлагаются. Таким образом, основные свойства аминогруппы в аминокислотах также значительно ослаблены. [c.375]
Лизин и орнитин, в молекулах которых имеются две аминогруппы и только один карбоксил, обладают сильными основными свойствами. Под влиянием гнилостных бактерий происходит отщепление от них молекулы углекислого газа с образованием птомаинов [c.381]
МЕЛАМИН зHaNJ — бесцветные кристаллы, т. пл. 354 С малорастворим в воде, спирте. В большинстве органических растворителей нерастворим. Аминогруппы придают М. основные свойства. В промышленности М. получают из дн-циандиамида или из мочевины. М. применяют, главным образом, в производстве пластмасс, лаков, клеев, отличающихся высокой механической прочностью, малой электропроводностью, водо- и термостойкостью. В текстильной промышленности М. используется для изготовления не-мнущихся и безусадочных тканей в бумажной — для производства водонепроницаемой бумаги в деревообрабатывающей — для склеивания древесины, получения лаковых покрытий. Кроме того, М. применяется для приготовления ионообменных смол, дубильных веществ и др. [c.158]
Таким образом, основные свойства аминогруппы в ароматических аминах ослаблены. В этом сказывается влияние бензольного остатка—фенила, усиливающего кислотные свойства вещества. [c.489]
Получают аминокислоты гидролизом белка. Свойства. Так как в аминокислотах есть две функциональные группы, одна из которых (карбоксил) обладает кислотными свойствами, а другая (аминогруппа) — основными свойствами, то в молекуле эти группы взаиню-действуют, приводя к внутримолекулярной нейтрал.i-зации и образованию ионизованной (биполярной) структуры [c.255]
В молекулах аминокислот содержатся две группы с прямопротивоположными свойствами карбоксильная группа—кислотная и аминогруппа с основными свойствами. Поэтому они обладают одновременно и кислотными и основными свойствами. Как кислоты, аминокислоты образуют со спиртами сложные эфиры, а с металлами и основаниями—соли [c.375]
Основные свойства особенно сильно ослаблены у тех аминов, у которых с аминогруппой связано несколько фенильных остатков. Дифениламин GHjNH eHs, правда, еще образует соли с сильными кислотами, но эти соли полностью распадаются при растворении в воде у трифениламина (СбН5)зЫ основность выражена еще слабее. [c.567]
Основные свойства азота амидной группы в мочевине выражены гораздо слабее, чем у аминогрупп первичных аминов, поэтому мочевина дает соль только с одной молекулой азотной кислоты. [c.97]
Это механизм вполне аналогичен механизму действия любого анионита, содержащего аминогруппу — NHj (см. гл. VII). Возможность присоединения протона к кремневой кислоте не вызывает сомнения в свете последних работ по исследованию основности. Основность, т. е. способность присоединять протон, проявляют и более сильные кислоты — такие, как уксусная и даже серная. Чем больше кислотность раствора, тем легче проявляет основные свойства гидрат окиси кремния. Действительно, в таких кислых растворах, как растворы H IO4 в уксусной кислоте, отрицательную ветвь калибровочной кривой дает даже стекло Дола. [c.436]
Дифениламин (СвН5).,НН, в котором азот аминогруппы связан с двумя бензольными ядрами, является еще более слабым основанием, чем анилин трифениламин (СвН5)зМ, содержащий в соединении с азотом аминогруппы три ароматических радикала, совсем не проявляет основных свойств и солей с кислотами не образует. [c.387]
Свойства амидов кислот. Амиды кислот, за исключением жидкого амида муравьиной кислоты,—кристаллические тела. В отличие от аммиака они почти не обладают основными свойствами. Только с сильными кислотами амиды кислот дают соли (например, Hg ONHa-H l), легко разлагаемые водой. Водород аминогруппы в амидах кислот способен замещаться мепаллом так, для ацетамида известно соединение состава ( Hs 0NH)2Hg. [c.268]
Теоретические основы органической химии (1964) — [
c.82
,
c.83
]
Источник
Амины
Амины – производные аммиака, в молекуле которого один, два или все три атома водорода замещены на углеводородные радикалы.
По количеству замещенных атомов водорода амины делят на:
По характеру углеводородных заместителей амины делят на
Общие особенности строения аминов
Также как и в молекуле аммиака, в молекуле любого амина атом азота имеет неподеленную электронную пару, направленную в одну из вершин искаженного тетраэдра:
По этой причине у аминов как и у аммиака существенно выражены основные свойства.
Так, амины аналогично аммиаку обратимо реагируют с водой, образуя слабые основания:
Связь катиона водорода с атомом азота в молекуле амина реализуется с помощью донорно-акцепторного механизма за счет неподеленной электронной пары атома азота. Предельные амины являются более сильными основаниями по сравнению с аммиаком, т.к. в таких аминах углеводородные заместители обладают положительным индуктивным (+I) эффектом. В связи с этим на атоме азота увеличивается электронная плотность, что облегчает его взаимодействие с катионом Н+.
Ароматические амины, в случае если аминогруппа непосредственно соединена с ароматическим ядром, проявляют более слабые основные свойства по сравнению с аммиаком. Связано это с тем, что неподеленная электронная пара атома азота смещается в сторону ароматической π-системы бензольного кольца в следствие чего, электронная плотность на атоме азота снижается. В свою очередь это приводит к снижению основных свойств, в частности способности взаимодействовать с водой. Так, например, анилин реагирует только с сильными кислотами, а с водой практически не реагирует.
Химические свойства предельных аминов
Как уже было сказано, амины обратимо реагируют с водой:
Водные растворы аминов имеют щелочную реакцию среды, вследствие диссоциации образующихся оснований:
Предельные амины реагируют с водой лучше, чем аммиак, ввиду более сильных основных свойств.
Основные свойства предельных аминов увеличиваются в ряду.
Вторичные предельные амины являются более сильными основаниями, чем первичные предельные, которые являются в свою очередь более сильными основаниями, чем аммиак. Что касается основных свойств третичных аминов, то то если речь идет о реакциях в водных растворах, то основные свойства третичных аминов выражены намного хуже, чем у вторичных аминов, и даже чуть хуже чем у первичных. Связано это со стерическими затруднениями, существенно влияющими на скорость протонирования амина. Другими словами три заместителя «загораживают» атом азота и мешают его взаимодействию с катионами H+.
Взаимодействие с кислотами
Как свободные предельные амины, так и их водные растворы вступают во взаимодействие с кислотами. При этом образуются соли:
Так как основные свойства предельных аминов сильнее выражены, чем у аммиака, такие амины реагируют даже со слабыми кислотами, например угольной:
Соли аминов представляют собой твердые вещества, хорошо растворимые в воде и плохо в неполярных органических растворителях. Взаимодействие солей аминов с щелочами приводит к высвобождению свободных аминов, аналогично тому как происходит вытеснение аммиака при действии щелочей на соли аммония:
2. Первичные предельные амины реагируют с азотистой кислотой с образованием соответствующих спиртов, азота N2 и воды. Например:
Характерным признаком данной реакции является образование газообразного азота, в связи с чем она является качественной на первичные амины и используется для их различения от вторичных и третичных. Следует отметить, что чаще всего данную реакцию проводят, смешивая амин не с раствором самой азотистой кислоты, а с раствором соли азотистой кислоты (нитрита) и последующим добавлением к этой смеси сильной минеральной кислоты. При взаимодействии нитритов с сильными минеральными кислотами образуется азотистая кислота, которая уже затем реагирует с амином:
Вторичные амины дают в аналогичных условиях маслянистые жидкости, так называемые N-нитрозаминами, но данная реакция в реальных заданиях ЕГЭ по химии не встречается. Третичные амины с азотистой кислотой взаимодействуют также как и с другими кислотами — с образованием соответствующих солей, в данном случае, нитритов.
Полное сгорание любых аминов приводит к образованию углекислого газа, воды и азота:
Взаимодействие с галогеналканами
Примечательно, что абсолютно такая же соль получается при действии хлороводорода на более замещенный амин. В нашем случае, при взаимодействии хлороводорода с диметиламином:
Получение аминов:
1) Алкилирование аммиака галогеналканами:
В случае недостатка аммиака вместо амина получается его соль:
2) Восстановление металлами (до водорода в ряду активности) в кислой среде:
с последующей обработкой раствора щелочью для высвобождения свободного амина:
3) Реакция аммиака со спиртами при пропускании их смеси через нагретый оксид алюминия. В зависимости от пропорций спирт/амин образуются первичные, вторичные или третичные амины:
Химические свойства анилина
Анилин – тривиальное название аминобензола, имеющего формулу:
Как можно видеть из иллюстрации, в молекуле анилина аминогруппа непосредственно соединена с ароматическим кольцом. У таких аминов, как уже было сказано, основные свойства выражены намного слабее, чем у аммиака. Так, в частности, анилин практически не реагирует с водой и слабыми кислотами типа угольной.
Взаимодействие анилина с кислотами
Анилин реагирует с сильными и средней силы неорганическими кислотами. При этом образуются соли фениламмония:
Взаимодействие анилина с галогенами
Как уже было сказано в самом начале данной главы, аминогруппа в ароматических аминах , втянута в ароматическое кольцо, что в свою очередь снижает электронную плотность на атоме азота, и как следствие увеличивает ее в ароматическом ядре. Увеличение электронной плотности в ароматическом ядре приводит к тому, что реакции электрофильного замещения, в частности, реакции с галогенами протекают значительно легче, особенно в орто- и пара- положениях относительно аминогруппы. Так, анилин с легкостью вступает во взаимодействие с бромной водой, образуя белый осадок 2,4,6-триброманилина:
Данная реакция является качественной на анилин и часто позволяет определить его среди прочих органических соединений.
Взаимодействие анилина с азотистой кислотой
Анилин реагирует с азотистой кислотой, но в виду специфичности и сложности данной реакции в реальном ЕГЭ по химии она не встречается.
Реакции алкилирования анилина
С помощью последовательного алкилирования анилина по атому азота галогенпроизводными углеводородов можно получать вторичные и третичные амины:
Получение анилина
1. Восстановление маталлами нитробензола в присутствии сильных кислот-неокислителей:
C6H5-NO2 + 3Fe + 7HCl = [C6H5-NH3]+Cl- + 3FeCl2 + 2H2O
2. Далее полученную соль обрабатывают щелочью для высвобождения анилина:
[C6H5-NH3]+Cl— + NaOH = C6H5-NH2 + NaCl + H2O
В качестве металлов могут быть использованы любые металлы, находящиеся до водорода в ряду активности.
Реакция хлорбензола с аммиаком:
С6H5−Cl + 2NH3 → C6H5NH2 + NH4Cl
Химические свойства аминокислот
Аминокислотами называют соединения в молекулах которых присутствуют два типа функциональных групп – амино (-NH2) и карбокси- (-COOH) группы.
Другими словами, аминокислоты можно рассматривать как производные карбоновых кислот, в молекулах которых один или несколько атомов водорода замещены на аминогруппы.
Таким образом, общую формулу аминокислот можно записать как (NH2)xR(COOH)y, где x и y чаще всего равны единице или двум.
Поскольку в молекулах аминокислот есть и аминогруппа и карбоксильная группа, они проявляют химические свойства схожие как аминов, так и карбоновых кислот.
Кислотные свойства аминокислот
Образование солей с щелочами и карбонатами щелочных металлов
Этерификация аминокислот
Аминокислоты могут вступать в реакцию этерификации со спиртами:
NH2CH2COOH + CH3OH → NH2CH2COOCH3+ H2O
Основные свойства аминокислот
1. Образование солей при взаимодействии с кислотами
NH2CH2COOH + HCl → [NH3CH2COOH]+Cl—
2. Взаимодействие с азотистой кислотой
NH2-CH2-COOH + HNO2 → НО-CH2-COOH + N2↑ + H2O
Примечание: взаимодействие с азотистой кислотой протекает так же, как и с первичными аминами
3. Алкилирование
NH2CH2COOH + CH3I → [CH3NH2CH2COOH]+I—
4. Взаимодействие аминокислот друг с другом
Аминокислоты могут реагировать друг с другом образуя пептиды – соединения, содержащие в своих молекулах пептидную связь –C(O)-NH-
При этом, следует отметить, что в случае проведения реакции между двумя разными аминокислотами, без соблюдения некоторых специфических условий синтеза, одновременно протекает образование разных дипептидов. Так, например, вместо реакции глицина с аланином выше, приводящей к глицилананину, может произойти реакция приводящая к аланилглицину:
Кроме того, молекула глицина не обязательно реагирует с молекулой аланина. Протекают также и реакции пептизации между молекулами глицина:
И аланина:
Помимо этого, поскольку молекулы образующихся пептидов как и исходные молекулы аминокислот содержат аминогруппы и карбоксильные группы, сами пептиды могут реагировать с аминокислотами и другими пептидами, благодаря образованию новых пептидных связей.
Отдельные аминокислоты используются для производства синтетических полипептидов или так называемых полиамидных волокон. Так, в частности с помощью поликонденсации 6-аминогексановой (ε-аминокапроновой) кислоты в промышленности синтезируют капрон:
Получаемая в результате этой реакции капроновая смола используется для производства текстильных волокон и пластмасс.
Образование внутренних солей аминокислот в водном растворе
В водных растворах аминокислоты существуют преимущественно в виде внутренних солей — биполярных ионов (цвиттер-ионов):
Получение аминокислот
1) Реакция хлорпроизводных карбоновых кислот с аммиаком:
Cl-CH2-COOH + 2NH3 = NH2-CH2-COOH + NH4Cl
2) Расщепление (гидролиз) белков под действием растворов сильных минеральных кислот и щелочей.
Источник