Какими общими свойствами обладают жидкости и газы

Какими общими свойствами обладают жидкости и газы thumbnail

Основная цель урока: выяснить особенности строения веществ в различных агрегатных состояниях и объяснить их. Сравнить физические свойства веществ в различных агрегатных состояниях.

Конспект урока

Рассмотрим  следующие вещества: вода, камень, воздух, олово, спирт, сахар, природный газ, лед, кислород, растительное масло, алюминий, молоко, азот  (данные вещества даны при комнатной температуре).

Многие из них мы привыкли видеть в каком-либо одном состоянии. Например, железо – в твердом, растительное масло – в жидком, водород – в газообразном. Однако есть и такие, которые в нашей жизни встречаются сразу в трех состояниях, например, вода: твердое состояние воды – лед, жидкое – вода, газообразное – водяной пар.

В природе вещества встречаются в трех состояниях: твердом, жидком и газообразном (лед, вода, водяной пар) Такое состояние вещества называется агрегатным.

Газы. Расстояние между молекулами во много раз больше самих молекул, они почти не притягиваются и свободно движутся во всех направлениях. Поэтому газы заполняют весь предоставленный объём, не имеют формы и легко сжимаются. Они принимают форму сосуда и полностью заполняют предоставленный им объём. Но если газы сильно сжать или охладить они переходят в жидкое состояние.

Жидкости. Молекулы расположены близко друг к другу, расстояние между ними сравнимо с размером молекул. Они скачками меняют свое место – «прыгают». Поэтому жидкости не сохраняют форму, они могут течь, их легко перелить. Молекулы жидкости не расходятся на большие расстояния и жидкость в обычных условиях сохраняет свой объём. Но сжать их трудно, так как при этом молекулы сближаются и между ними возникает отталкивание.

Твердые тела. Молекулы расположены в строгом порядке расстояние между молекулами сравнимо с размером молекул. В твёрдых телах притяжение между молекулами ещё больше чем у жидкостей. Молекулы колеблются около определенной точки, не могут перемещаться далеко от неё. Поэтому твердые тела сохраняют форму и объем.

Тест для самоконтроля 

Вопрос №1. В скольких агрегатных состояниях могут вообще находиться вещества?

А.  В двух: твёрдом и жидком

Б.  В двух: твёрдом и газообразном

С.  В трех: в виде твёрдого тела, жидкости и пара

Д.  В трех: твёрдом, жидком и газообразном

Вопрос № 2.  Может ли какое-либо вещество быть в разных состояниях?

А.  Не может

Б.  Нет: любое вещество или твердое, или жидкое, или газообразное

С.  Может: оно изменит свое состояние, если изменятся условия

Вопрос № 3. Какими общими свойствами обладают твёрдые тела?

А.  Собственным объёмом и изменчивостью формы

Б.  Собственными объёмом и формой

Д.  Собственной формой и легко изменяемым объёмом

Вопрос № 4. Каковы общие свойства жидкостей?

А.  Наличие у них собственного объёма и текучести, следовательно, изменчивости формы

Б.  Обладание собственным объёмом и формой

С.  Отсутствие собственного объёма и формы

Д.  Трудность изменения объёма и формы

Вопрос № 5. Какие общие свойства присущи газам?

А.  Сохранение газом своего объёма и формы

Б.  Неизменность объёма газа при приобретении им любой формы

С.  Заполнение газом всего предоставленного ему пространства

Д.  Трудность сжатия, изменения формы и объёма

Вопрос № 6. Как расположены, взаимодействуют и движутся молекулы в газах?

А.  Молекулы расположены на расстояниях, сравнимых с размерами самих молекул, и перемещаются свободно друг относительно друга

Б.  Молекулы находятся на больших расстояниях (по сравнению с размерами молекул) друг от друга, практически не взаимодействуют и движутся беспорядочно

С.  Они расположены в строгом порядке, сильно взаимодействуют и колеблются около определённых положений

Д.  Молекулы находятся на больших расстояниях друг от друга в определенном порядке, слабо взаимодействуют друг с другом и движутся в разные стороны

Источник

Естественные науки, включающая химию и физику, обычно рассматриваются как науки, изучающие природу и свойства вещества и энергии в неживых системах. Вещество во Вселенной – атомы, молекулы и ионы, которые составляют все физические тела, все, что имеет массу и занимает пространство. Энергия — это способность вызывать изменения. Энергия не может быть создана или уничтожена; он может быть только сохранена и преобразована из одной формы в другую. Потенциальная энергия — это энергия, хранящаяся в объекте из-за его положения – например, ведро с водой, повешенное над дверью, может упасть. Кинетическая энергия — это энергия, движения, любой объект или частица, находящаяся в движении, обладает кинетической энергией, зависящей от массы и скорости тела. Кинетическая энергия может быть преобразована в другие виды энергии, такие как электрическая энергия и тепловая энергия.

Существует пять известных фаз или состояний вещества: твердое тело, жидкость, газ, плазма и бозе-эйнштейновский конденсат. Основное различие в структурах каждого состояния находится в плотностях частиц.

ТВЕРДОЕ ТЕЛО

В твердом теле частицы плотно упакованы, поэтому они не могут двигаться очень сильно. Частицы твердого вещества имеют очень низкую кинетическую энергию. Электроны каждого атома находятся в движении, поэтому атомы имеют небольшую вибрацию, но они фиксируются в своем положении. Твердые тела имеют определенную форму, и могут длительное время ее сохранять. У них также есть определенный объем. Частицы твердого тела уже настолько плотно упакованы вместе, что увеличивающееся давление не будет сжимать твердое тело до меньшего объема.

ЖИДКОСТИ

В жидкой фазе частицы вещества имеют большую кинетическую энергию, чем частицы в твердом теле. Частицы жидкости не удерживаются в регулярном расположении, но все еще очень близки друг к другу, поэтому жидкости имеют определенный объем. Жидкости, как и твердые тела, трудно сжимаемы. Частицы жидкости имеют достаточно места для обтекания друг друга, поэтому жидкости имеют неопределенную форму. Жидкость принимает форму емкости, в которую она помещена. Сила распределяется равномерно по всей жидкости, поэтому, когда объект помещается в жидкость, частицы жидкости перемещаются за объектом.

Величина восходящей плавучей силы равна весу жидкости, в объеме тела. Когда плавучая сила равна силе тяжести, объект будет плавать. Этот принцип плавучести был обнаружен греческим математиком Архимедом, который, согласно легенде, выпрыгнул из своей ванны и побежал обнаженным по улицам, крича «Эврика!», после того, как догадался о выталкивающих силах в жидкости. Эту силу еще называют силой Архимеда, как дань уважения и признания древнему ученому.

Частицы жидкости, как правило, удерживаются слабым межмолекулярным притяжением, а не свободно перемещаются, как частицы газа. Эта сила сцепления соединяет частицы вместе, образуя капли или потоки.

Ученые сообщили, что в апреле 2016 года они создали странное состояние материи, которое, как предполагалось, существовало, но никогда не было видно в реальной жизни. Хотя этот тип материи можно держать в руке, как если бы он был сплошным, увеличение материала выявило бы беспорядочные взаимодействия его электронов, более характерные для жидкости. Это тип материи называют квантовой спиновой жидкостью Китаева, в ней электроны входят в своеобразный квантовый танец, в котором они взаимодействуют или «разговаривают» друг с другом. Обычно, когда вещество остывает, спин его электронов имеет тенденцию выстраиваться в линию. Но в этой квантовой спиновой жидкости электроны взаимодействуют так, что они влияют на то, как другие вращаются и никогда не выравниваются независимо от того, насколько материал холодный. Материал будет вести себя так, как будто его электроны, считающиеся неделимыми, разрушались.

ГАЗЫ

Частицы газа находятся на большом расстоянии друг от друга и имеют высокую кинетическую энергию. Если пространство не ограничено, частицы газа будут разбросаны бесконечно; если оно ограничено, газ будет расширяться, чтобы заполнить весь объем. Когда газ оказывается под давлением, то есть уменьшается объем емкости, пространство между частицами уменьшается, а давление, оказываемое их столкновениями, увеличивается. Если объем сосуда поддерживается постоянным, но температура газа увеличивается, то давление также увеличивается. Частицы газа обладают достаточной кинетической энергией для преодоления межмолекулярных сил, которые удерживают твердые частицы и жидкости вместе, поэтому газ не имеет определенного объема и формы.

ПЛАЗМА

Плазма не является общим состоянием материи здесь, на Земле, но может быть самым распространенным состоянием материи во Вселенной. Плазма состоит из сильно заряженных частиц с чрезвычайно высокой кинетической энергией. Благородные газы (гелий, неон, аргон, криптон, ксенон и радон) часто используются для создания светильников, используя электричество для их ионизации в плазменное состояние. Звезды, по сути, являются перегретыми шарами плазмы.

КОНДЕНСАТ БОЗЕ-ЭЙНШТЕЙНА

В 1995 году технология позволила ученым создать новое состояние материи – конденсат Бозе-Эйнштейна (КБЭ). Используя комбинацию лазеров и магнитов, Эрик Корнелл и Карл Вейман охладили образец рубидия с точностью до нескольких градусов до абсолютного нуля. При этой чрезвычайно низкой температуре молекулярное движение очень близко к остановке. Так как кинетическая энергия почти не передается от одного атома к другому, атомы начинают сжиматься вместе. Уже не тысячи отдельных атомов, а один «супер атом». КБЭ используется для изучения квантовой механики на макроскопическом уровне. Свет, кажется, замедляется, когда он проходит через КБЭ, что позволяет изучать парадокс частиц/волн. КБЭ также обладает многими свойствами сверхтекучей жидкости без трения, также используются для моделирования условий, которые могут выполняться в черных дырах.

СМЕНА ФАЗЫ

Добавление энергии к веществу приводит к физическому изменению – материя переходит из одного состояния в другое. Например, добавление тепловой энергии – тепла – к жидкой воде приводит к тому, что она становится паром или газом. Извлечение энергии также приводит к физическим изменениям, например, когда жидкая вода становится льдом – твердой – при удалении тепла. Физическое изменение фазы также может быть вызвано движением и давлением.

ПЛАВЛЕНИЕ И ОТВЕРДЕВАНИЕ

Когда тепло прикладывается к твердому веществу, его частицы начинают быстрее вибрировать и склонны двигаться дальше друг от друга. Когда вещество при стандартном давлении достигает определенной точки, называемой точкой плавления, твердое вещество начинает превращаться в жидкость. Точку плавления чистого вещества часто можно определить с точностью до 0,1 градуса Цельсия, точкой, в которой твердая и жидкая фазы находятся в равновесии. Если вы продолжаете нагревать образец, температура не будет повышаться выше точки плавления, пока весь образец не будет сжижен. Тепловая энергия используется для преобразования твердого вещества в жидкую форму. Как только весь образец станет жидким, температура снова начнет расти. Соединения, которые в остальном очень похожи, могут иметь разные точки плавления, поэтому точка плавления может быть полезным способом различения среди них. Например, сахароза имеет точку плавления 186,1 градусов Цельсия, тогда как температура плавления глюкозы составляет 146 градусов Цельсия. Твердая смесь, такая как металлический сплав, часто может быть разделена на ее составные части путем нагревания смеси и извлечения жидкостей по мере достижения ими различных точек плавления.

Точка замерзания – это температура, при которой жидкое вещество достаточно охлаждается для образования твердого вещества. По мере охлаждения жидкости движение частиц замедляется. Во многих веществах частицы выравниваются точными геометрическими узорами для образования кристаллических твердых веществ. Большинство жидкостей сжимаются, когда они замерзают. Одной из важных характеристик воды является то, что она расширяется при замерзании, поэтому лед плавает. Если бы лед не плавал, не было бы жидкой воды под замерзшим льдом, и многие формы водной жизни были бы невозможны.

Температура замерзания часто близка к той же температуре, что и температура плавления, но не считается характерной для вещества, поскольку несколько факторов могут ее изменить. Например, добавление растворенных веществ в жидкость приведет к снижению температуры замерзания. Примером этого является использование суспензии соли для снижения температуры, при которой вода замерзает на наших дорогах. Другие жидкости можно охлаждать до температур, значительно ниже их температуры плавления, до того, как они начнут затвердевать. Такие жидкости называются суперохлаждаемыми и часто требуют наличия пылевой частицы или затравочного кристалла для начала процесса кристаллизации.

СУБЛИМАЦИЯ

Когда твердое вещество превращается непосредственно в газ без прохождения жидкой фазы, процесс известен как сублимация. Сублимация происходит, когда кинетическая энергия частиц больше атмосферного давления, окружающего образец. Это может произойти, когда температура образца быстро увеличивается за точку кипения (испарение вспышки). Чаще всего вещество может быть «высушено в замороженном состоянии» путем его охлаждения в условиях вакуума, так что вода в веществе подвергается сублимации и удаляется из образца. Несколько летучих веществ будут подвергаться сублимации при нормальной температуре и давлении. Наиболее известным из этих веществ является CO2 или сухой лед.

ПАРООБРАЗОВАНИЕ

Испарение представляет собой превращение жидкости в газ. Испарение может происходить путем испарения или кипения.

Поскольку частицы жидкости находятся в постоянном движении, они часто сталкиваются друг с другом, передавая при этом энергию. Этот перенос энергии имеет малое влияние внутри жидкости, но когда достаточная энергия передается частице вблизи поверхности, она может получить достаточную энергию, чтобы полностью удалиться из образца в виде частицы свободного газа. Этот процесс называется испарением, и он продолжается до тех пор, пока остается жидкость. Энергия, передаваемая поверхностным молекулам, вызывающая их вылет, уносится от оставшегося жидкого образца.

Когда к жидкости добавляется достаточно тепла, образуя пузырьки пара ниже поверхности, мы говорим, что жидкость кипит. Температура, при которой жидкость кипит, является переменной. Точка кипения зависит от давления вещества. Жидкость под более высоким давлением будет требовать больше тепла до того, как в ней могут образоваться пузырьки пара. На больших высотах атмосферном давлении ниже, чем при нормальных условиях, поэтому жидкость будет кипеть при более низкой температуре. Такое же количество жидкости на уровне моря находится под большим атмосферным давлением и будет кипеть при более высокой температуре.

КОНДЕНСАЦИЯ И ДЕСУБЛИМАЦИЯ

Конденсация – это когда газ превращается в жидкость. Конденсация происходит, когда газ охлаждается или сжимается до такой степени, что кинетическая энергия частиц больше не может преодолевать межмолекулярные силы. Первоначальный кластер частиц инициирует процесс, который имеет тенденцию дополнительно охлаждать газ, так что конденсация продолжается. Когда газ превращается непосредственно в твердое вещество, не проходя через жидкую фазу, процесс называется осаждением или десублимацией. Примером этого является то, как при пониженных температурах преобразуется водяной пар в атмосфере в иней и лед. Иней имеет тенденцию обрисовывать сплошные листья травы и веток, потому что воздух, касающийся этих твердых веществ, охлаждается быстрее, чем воздух, который не касается твердой поверхности.

Источник

Известно, что все, что окружает человека, включая и его самого, – это тела, состоящие из веществ. Те, в свою очередь, построены из молекул, последние из атомов, а они – из еще более мелких структур. Однако окружающее разнообразие столь велико, что сложно представить даже какую-то общность. Так и есть. Соединения исчисляются миллионами, каждое из них уникально по свойствам, строению и выполняемой роли. Всего выделяют несколько фазовых состояний, по которым можно соотнести все вещества.

свойства жидкостей

Агрегатные состояния веществ

Можно назвать четыре варианта агрегатного состояния соединений.

  1. Газы.
  2. Твердые вещества.
  3. Жидкости.
  4. Плазма – сильно разреженные ионизированные газы.

В данной статье мы рассмотрим свойства жидкостей, особенности их строения и возможные параметры характеристик.

Классификация жидких тел

В основу данного деления положены свойства жидкостей, их структура и химическое строение, а также типы взаимодействий между составляющими соединения частицами.

  1. Такие жидкости, которые состоят из атомов, удерживающихся между собой силами Ван-дер-Ваальса. Примерами могут служить жидкие газы (аргон, метан и другие).
  2. Такие вещества, которые состоят из двух одинаковых атомов. Примеры: газы в сжиженном виде – водород, азот, кислород и другие.
  3. Жидкие металлы – ртуть.
  4. Вещества, состоящие из элементов, связанных ковалентными полярными связями. Примеры: хлороводород, йодоводород, сероводород и прочие.
  5. Соединения, в которых присутствуют водородные связи. Примеры: вода, спирты, аммиак в растворе.

Существуют и особенные структуры – типа жидких кристаллов, неньютоновских жидкостей, которые обладают особыми свойствами.

назовите свойства жидкостей

Мы же рассмотрим основные свойства жидкости, которые отличают ее от всех других агрегатных состояний. В первую очередь это такие, которые принято называть физическими.

Свойства жидкостей: форма и объем

Всего можно выделить около 15 характеристик, которые позволяют описать, что же представляют собой рассматриваемые вещества и в чем заключается их ценность, особенности.

Самые первые физические свойства жидкости, которые приходят на ум при упоминании этого агрегатного состояния, это способность менять форму и занимать определенный объем. Так, например, если говорить о форме жидких веществ, то общепринято считать ее отсутствующей. Однако это не так.

Под действием всем известной силы тяжести капли вещества подвергаются некоей деформации, поэтому их форма нарушается и становится неопределенной. Однако если поместить каплю в условия, при которых гравитация не действует или сильно ограничена, то она примет идеальную форму шара. Таким образом, получив задание: “Назовите свойства жидкостей” человек, считающий себя достаточно сведущим в физике, должен упомянуть об этом факте.

основные свойства жидкости

Что касается объема, то здесь следует заметить общие свойства газов и жидкостей. И те и другие способны занимать весь объем пространства, в котором находятся, ограничиваясь лишь стенками сосуда.

Вязкость

Физические свойства жидкости весьма разнообразны. Но уникальным является такое из них, как вязкость. Что это такое и чем определяется? Главные параметры, от которых зависит рассматриваемая величина, это:

  • касательное напряжение;
  • градиент скорости движения.

Зависимость указанных величин линейная. Если же объяснить более простыми словам, то вязкость, как и объем, – это такие свойства жидкостей и газов, которые являются для них общими и подразумевают неограниченное движение независимо от внешних сил воздействия. То есть если вода вытекает из сосуда, она будет продолжать это делать при любых воздействиях (сила тяжести, трения и прочих параметрах).

физические свойства жидкости

В этом состоит отличие от неньютоновских жидкостей, которые обладают большей вязкостью и могут оставлять вслед за движением дыры, заполняющиеся со временем.

От чего же будет зависеть данный показатель?

  1. От температуры. С увеличением температуры вязкость одних жидкостей увеличивается, а других, наоборот, уменьшается. Это зависит от конкретного соединения и его химического строения.
  2. От давления. Повышение вызывает увеличение показателя вязкости.
  3. От химического состава вещества. Вязкость изменяется при наличии примесей и посторонних компонентов в навеске чистого вещества.

Теплоемкость

Этот термин определяет способность вещества поглощать определенное количество тепла для увеличения собственной температуры на один градус по Цельсию. Существуют разные соединения по данному показателю. Одни обладают большей, другие меньшей теплоемкостью.

Так, например, вода – очень хороший теплонакопитель, что позволяет ее широко использовать для систем отопления, приготовления пищи и прочих нужд. В целом, показатель теплоемкости строго индивидуален для каждой отдельно взятой жидкости.

Поверхностное натяжение

Часто, получив задание: “Назовите свойства жидкостей” сразу вспоминают о поверхностном натяжении. Ведь с ним детей знакомят на уроках физики, химии и биологии. И каждый предмет объясняет этот важный параметр со своей стороны.

Классическое определение поверхностного натяжения следующее: это граница раздела фаз. То есть в то время, когда жидкость заняла определенный объем, она снаружи граничит с газовой средой – воздухом, паром или еще каким-либо веществом. Таким образом, на месте соприкосновения возникает разделение фаз.

свойства жидкостей и газов

При этом молекулы стремятся окружить себя как можно большим числом частиц и, таким образом, приводят как бы к сжиманию жидкости в целом. Следовательно, поверхность словно натягивается. Этим же свойством можно объяснить и шарообразную форму капель жидкости при отсутствии воздействия сил тяжести. Ведь именно такая форма идеальна с точки зрения энергии молекулы. Примеры:

  • мыльные пузыри;
  • кипящая вода;
  • капли жидкости в невесомости.

Некоторые насекомые приспособились к “хождению” по поверхности воды именно благодаря поверхностному натяжению. Примеры: водомерки, водоплавающие жуки, некоторые личинки.

Текучесть

Есть общие свойства жидкостей и твердых тел. Одно из них – текучесть. Вся разница в том, что для первых она неограниченна. В чем заключается суть этого параметра?

Если приложить внешнее воздействие к жидкому телу, то оно разделится на части и отделит их друг от друга, то есть перетечет. При этом каждая часть снова заполнит весь объем сосуда. Для твердых тел это свойство ограниченно и зависит от внешних условий.

Зависимость свойств от температуры

К таковым можно отнести три параметра, характеризующие рассматриваемые нами вещества:

  • перегрев;
  • охлаждение;
  • кипение.

Такие свойства жидкостей, как перегревание и переохлаждение, напрямую связаны с критическими температурами (точками) кипения и замерзания соответственно. Перегревшейся называют жидкость, которая преодолела порог критической точки нагревания при воздействии температуры, однако внешних признаков кипения не подала.

Переохлажденной, соответственно, называют жидкость, которая преодолела порог критической точки перехода в другую фазу под воздействием низких температур, однако твердой не стала.

Как в первом, так и во втором случае есть условия для проявления таких свойств.

  1. Отсутствие механических воздействий на систему (движение, вибрация).
  2. Равномерная температура, без резких скачков и перепадов.

Интересен факт, что если в перегретую жидкость (например, воду) бросить посторонний предмет, то она мгновенно вскипит. Получить же ее можно нагреванием под воздействием излучения (в микроволновой печи).

Сосуществование с другими фазами веществ

Можно выделить два варианта по данному параметру.

  1. Жидкость – газ. Такие системы являются наиболее широко распространенными, поскольку существуют в природе повсеместно. Ведь испарение воды – часть естественного круговорота. При этом образующийся пар существует одновременно с жидкой водой. Если же говорить о замкнутой системе, то и там происходит испарение. Просто пар становится насыщенным очень быстро и вся система в целом приходит к равновесию: жидкость – насыщенный пар.
  2. Жидкость – твердые вещества. Особенно на таких системах заметно еще одно свойство – смачиваемость. При взаимодействии воды и твердого вещества последнее может смачиваться полностью, частично или вообще отталкивать воду. Существуют соединения, которые растворяются в воде быстро и практически неограниченно. Есть и те, что вообще к этому не способны (некоторые металлы, алмаз и прочие).

    свойства жидкостей и твердых тел

В целом изучением взаимодействия жидкостей с соединениями в других агрегатных состояниях занимается дисциплина гидроаэромеханика.

Сжимаемость

Основные свойства жидкости были бы неполными, если бы мы не упомянули о сжимаемости. Конечно, этот параметр больше характерен для газовых систем. Однако и рассматриваемые нами также могут поддаваться сжатию при определенных условиях.

Главное отличие – это скорость процесса и его равномерность. Если газ можно сжать быстро и под небольшим давлением, то жидкости сжимаются неравномерно, достаточно долго и при специально подобранных условиях.

Испарение и конденсация жидкостей

Это еще два свойства жидкости. Физика дает им следующие объяснения:

  1. Испарение – это процесс, который характеризует постепенный переход вещества из жидкого агрегатного состояния в твердое. Происходит это под действием тепловых воздействий на систему. Молекулы приходят в движение и, меняя свою кристаллическую решетку, переходят в газообразное состояние. Процесс может происходить до тех пор, пока вся жидкость не перейдет в пар (для открытых систем). Или же до установления равновесия (для замкнутых сосудов).
  2. Конденсация – процесс, противоположный выше обозначенному. Здесь пар переходит в молекулы жидкости. Так происходит до установления равновесия или полного фазового перехода. Пар отдает в жидкость большее количество частиц, чем она ему.

Типичные примеры этих двух процессов в природе – испарение воды с поверхности Мирового океана, конденсация ее в верхних слоях атмосферы, а затем выпадение в виде осадков.

Механические свойства жидкости

Данные свойства являются предметом изучения такой науки, как гидромеханика. Конкретно – ее раздела, теории механики жидкости и газа. К основным механическим параметрам, характеризующим рассматриваемое агрегатное состояние веществ, относятся:

  • плотность;
  • удельный вес;
  • вязкость.

Под плотностью жидкого тела понимают его массу, которая содержится в одной единице объема. Данный показатель для разных соединений варьируется. Существуют уже рассчитанные и измеренные экспериментальным путем данные по этому показателю, которые занесены в специальные таблицы.

общие свойства газов и жидкостей

Удельным весом принято считать вес одной единицы объема жидкости. Данный показатель сильно зависит от температуры (при повышении ее вес снижается).

Для чего следует изучать механические свойства жидкостей? Данные знания являются важными для понимания процессов, происходящих в природе, внутри человеческого организма. Также при создании технических средств, различной продукции. Ведь жидкие вещества – одна из самых распространенных агрегатных форм на нашей планете.

Неньютоновские жидкости и их свойства

Свойства газов, жидкостей, твердых тел – это объект изучения физики, а также некоторых смежных с ней дисциплин. Однако помимо традиционных жидких веществ, существуют еще и так называемые неньютоновские, их тоже изучает эта наука. Что они собой представляют и почему получили такое название?

Для понимания того, что собой представляют подобные соединения, приведем самые распространенные бытовые примеры:

  • “лизун”, которым играют дети;
  • “хенд гам”, или жвачка для рук;
  • обычная строительная краска;
  • раствор крахмала в воде и прочее.

То есть это такие жидкости, вязкость которых подчиняется градиенту скорости. Чем быстрее воздействие, тем выше показатель вязкости. Поэтому при резком ударе хенд гама об пол он превращается в совершенно твердое вещество, способное расколоться на части.

механические свойства жидкости

Если же оставить его в покое, то буквально через несколько минут он растечется липкой лужицей. Неньютоновские жидкости – достаточно уникальные по свойствам вещества, которые нашли применение не только в технических целях, но и в культурно-бытовых.

Источник